
Silvina Caino-Lores · Demetris Zeinalipour ·
Thaleia Dimitra Doudali · David E. Singh ·
Gracia Ester Martín Garzón · Leonel Sousa ·
Diego Andrade · Tommaso Cucinotta ·
Donato D'Ambrosio · Patrick Diehl · Manuel F. Dolz ·
Admela Jukan · Raffaele Montella · Matteo Nardelli ·
Marta Garcia-Gasulla · Sarah Neuwirth (Eds.)

LN
CS

 1
53

85

Euro-Par 2024 International Workshops
Madrid, Spain, August 26–30, 2024
Proceedings, Part I

Euro-Par 2024:
Parallel Processing Workshops

TNBS: A Kernel-Based Benchmarking
for Digital Quantum Computers

Gonzalo Ferro1 , Oluwatosin Odubanjo2 , Diego Andrade2(B) ,
and Andrés Gómez1

1 Galicia Supercomputing Center (CESGA), Santiago de Compostela, Spain
{gonzalo.ferro.costas,agomez}@cesga.es

2 CITIC, Computer Architecture Group, Universidade da Coruña, A Coruña, Spain
{oluwatosin.esther.odubanjo,diego.andrade}@udc.es

Abstract. The systematic evaluation of the performance of Quantum
Computers allows users to identify the best platform to execute a cer-
tain class of workload, and it can also guide the future developments
of hardware companies. The NEASQC Benchmark Suite (TNBS) is a
methodology designed in the context of the NEASQC (NExt Applica-
tionS of Quantum Computing) European project to perform such eval-
uation across several benchmark cases identified as common in one or
several domains of application of Quantum Computing. TNBS follows
several design principles identified as relevant after a thorough evalu-
ation of the existing benchmarking methodologies: (1) benchmarks are
defined at high-level not being linked to any algorithmic approach or
implementation, (2) benchmarks are scalable (in qubits) and their out-
put is classically verifiable, (3) performance metrics may be defined per
case to fit the nature of the outputs of each case, and (4) the benchmark
report also keeps record of all the relevant components of the execu-
tion stack. Finally, in the future, the reports may be submitted to a
centralized repository, which is equipped with a web interface allowing a
systematic and objective comparison of different platforms across the dif-
ferent cases. The first release of TNBS is composed of 4 benchmark cases
and provides a reference implementation in myQLM. Documentation and
code are available at https://github.com/NEASQC/WP3 Benchmark.

1 Introduction

Digital Quantum Computers are at a level of maturity that permits the execu-
tion of quantum circuits that use up to a few hundred qubits. These qubits in
the current Noisy Intermediate-Scale Quantum (NISQ) era are prone to quan-
tum decoherence and are delicate to quantum measurements. These issues give
rise to the degradation of the accuracy of quantum computations, although they
are evolving fast, increasing their capability [1]. Heavy ongoing improvements
in qubit count, quality, and stability, targeted at solving this problem, however,
have generated diversity in qubit technologies, resulting in multiple comput-
ing models, which makes it challenging to design and implement benchmarking
c© The Author(s) 2025
S. Caino-Lores et al. (Eds.): Euro-Par 2024, LNCS 15385, pp. 28–39, 2025.
https://doi.org/10.1007/978-3-031-90200-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-90200-0_3&domain=pdf
http://orcid.org/0000-0001-5364-2283
http://orcid.org/0009-0006-7830-3978
http://orcid.org/0000-0001-5670-7425
http://orcid.org/0000-0001-7272-8488
https://github.com/NEASQC/WP3_Benchmark
https://github.com/NEASQC/WP3_Benchmark
https://github.com/NEASQC/WP3_Benchmark
https://github.com/NEASQC/WP3_Benchmark
https://github.com/NEASQC/WP3_Benchmark
https://github.com/NEASQC/WP3_Benchmark
https://doi.org/10.1007/978-3-031-90200-0_3

TNBS: A Kernel-Based Benchmarking for Digital Quantum Computers 29

methodologies that are detached from this diversity and can appropriately assess
the interaction of the components of the Quantum Computer (QC) stack.

Performance characterization protocols for gate-based quantum platforms in
the NISQ era study the performance of quantum operations, full applications or
synthetic workloads. While application benchmarks can accurately capture the
user experience, conducting repetitive performance measurements can be time-
consuming; they are also restrictive, as it is harder for the experimenter to isolate
the effect on the performance of a specific component of the Quantum Platform
(QP) or application. In contrast, quantum synthetic benchmarking offers greater
flexibility, as it can be explicitly designed to do so. This lack of restriction may
enhance the versatility and precision of benchmarking procedures. The experi-
menter can isolate and probe specific components or operations of the platform,
resulting in a controlled experimentation.

Furthermore, QCs will not work alone. In fact, they can be seen as another
accelerator of a complex computing platform, as current GPUs are. For this rea-
son, they are also referred to as Quantum Processing Units (or QPU). In fact,
every quantum algorithm is really hybrid, mixing classical and quantum parts.
These QPUs can work alone or jointly, defining a Distributed High Performance
Quantum Computing infrastructure [2], with or without quantum communica-
tions. Any benchmark for digital quantum computers must take into account
both the hybrid nature of the tasks and the possibility of using several QPUs.

This paper introduces The NEASQC Benchmark Suite (TNBS) which is
based on the analysis of these existing methodologies to propose a full-stack
platform-agnostic application-driven benchmarking methodology. The three con-
tributions of this paper are:

1 A discussion of the state of the art of benchmarking of Quantum Computers
(Sect. 2).

2 A description of the new NEASQC benchmark suite (TNBS) (Sect. 3).
3 A description of one of its benchmark cases: Probability Loading (PL)

(Sect. 4).

2 Review of the State of the Art of Quantum
Benchmarking

Quantum Computing benchmarking methodologies usually fall within one of
these three categories: Quantum Operations Benchmarking (QOB), Quan-
tum Application Benchmarking (QAB), and Quantum Synthetic Benchmarking
(QSB). The evaluation of the reliability of quantum operations in QOB involves
techniques of Quantum Process tomography (QPT), Quantum State tomogra-
phy (QST), Gate set tomography (GST), Direct Fidelity Estimation (DFE),
randomized benchmarking (RB), and cycle benchmarking (CB) [5, 6] which aim
at providing information related to the accuracy, fidelity and effectiveness of gate
operations, qubits, quantum states, and quantum processes [9].

30 G. Ferro et al.

Quantum Application Benchmarking (QAB)

QAB relies on the use of practical quantum workloads to compare performance
across different quantum platforms and can provide a holistic measure of the
computational capabilities of quantum platforms [4]. The designed methodolo-
gies include benchmarks for low-level (for example: Quantum Fourier Transform
(QFT) and Phase Estimation, which serve as the basic building block of high-
level quantum algorithms and applications), high-level (for example: Search-
ing, Hamiltonian Simulation), and hybrid classical-quantum algorithms (for
example: Quantum Approximate Optimization Algorithm (QAOA), and Vari-
ational Quantum Eigensolver (VQE)). Specifically, low-level algorithms bench-
marks are designed to reflect the functions of specific low-level operations within
the broader context of an application or an higher level algorithm. In contrast,
high-level and hybrid classical-quantum algorithms benchmarking focuses on all
aspects of the algorithm.

The SupermarQ suite [3] is an example, which compares the performance of
IBM, IonQ, and AQT@LBNL platforms by executing quantum workloads such
as QAOA, VQE, Hamiltonian Simulation, etc. Also, QED-C suite [11] high-
lights quantum workloads such as Hamiltonian simulation, VQE, etc. It also
features low-level algorithms such as the QFT, Phase, and Amplitude Estima-
tions. Furthermore, this work (TNBS), is a contribution to low-level algorithms
benchmarking.

Quantum Synthetic Benchmarking (QSB)

QSB methodologies can be designed with specially structured and constructed
workloads with specific properties to stress certain components of the QC stack.
As such, these workloads can be artificially generated or may be inspired by
applications. QSB allows for the isolation and controlled experimentation of
separated components, and depending on performance assessment, their holistic
degree can be influenced by the decision to focus on specific components of the
QC stack. In this case, an understanding of individual components of a QP is
obtained, but it does not provide a comprehensive assessment of a QPs overall
capabilities, leading to a less holistic evaluation. The holistic degree of QSB, can
be extended by taking into account the full stack of the QC.

This description of QSB allows us capture it in the context of the structure
and specific properties of the workloads as well as its holistic degree which is a
measure of controlled experimentation, thereby allowing us to further divide it
into Quantum Random Modelled Benchmarking (QRMB) and Quantum Appli-
cation Modelled Benchmarking (QAMB).

Quantum Random-Modelled Benchmarking (QRMB): This category of
QSB characterizes benchmarks that are based on a random model of circuits.
Hence, these quantum workloads are artificially generated and are designed to
focus on components of the QC stack at the lower level (such as gates, error
correction, or noise characteristics) and the compilation level of the stack.

TNBS: A Kernel-Based Benchmarking for Digital Quantum Computers 31

The IBMs Quantum volume (QV) metric evaluation [6], is an example of
QRMB that provides a holistic measure [8], of the degree of generality 1 of a quan-
tum computer; it takes into account hardware performance (such as fidelity, error
rates, crosstalk, etc.), design parameters (such as connectivity of qubits and gate
set), and also includes the software for circuit optimization. This benchmark’s
main drawback is its random-fixed-generic nature of the quantum circuit, non-
scalability, and restriction to the square structured quantum circuit model used.

Another example QRMB is the quantum LINPACK [7], which wants to be
analogous to the classical LINPACK benchmark. It measures performance of
a QC to solve random systems of linear equations, using the RAndom Circuit
Block-Encoded Matrix (RACBEM) as a model. Due to the use of a random
matrix model and a random quantum circuit model, it does not reflect the
behaviour of real-world applications and is also not efficiently scalable.

Quantum Application-Modelled Benchmarking (QAMB): This cate-
gory of QSB encompasses benchmarks focused on practical quantum workloads
that reflect real-world scenarios relevant to various fields. They are based on
application-modelled circuits with a systematic structure, aiming to bridge the
gap between theoretical capabilities and practical impact. These benchmarks
evaluate quantum processors on tasks of practical importance, providing a more
holistic approach than QRMBs. While they are not real-world quantum applica-
tions themselves, they allow for the extrapolation of likely real-world application
performance from the benchmark results and the potential improvement of spe-
cific tasks within an application.

As an example, the work of Mills, et al. [4], uses a set of quantum class
circuits inspired by structured circuits which reflects practicality in near-term
machine learning and chemistry applications, random circuits, product formula
circuits, and VQE state preparation circuits. This work takes inspiration from
the IBMs quantum volume metric for square modeled circuits and extends to
models for deep and shallow quantum circuits reflecting practical significance.
The proposed methodology is based on modifying the variable components of
the QC stack, therefore, it offers controlled experimentation.

Another proposal that fits into this category is the work of Kobayashi et
al., 2022 [10], which allows for a study of the role of optimizers in Variational
Quantum Eigensolvers by systematically separating the target Hamiltonian and
the ansatz, which are responsible for determining the complexity of the opti-
mization problem in the VQE. With this approach, benchmarks that depend on
the structure of the ansatz circuit can be designed.

2.1 Low-Level and High-Level Quantum Benchmarking

Whether a quantum benchmark is low-level or high-level is independent of the
choice of quantum circuit design. Rather, it depends on the choice of figures

1 The degree to which the QC performs as a general purpose QC.

32 G. Ferro et al.

of merits (or metrics). As such, quantum circuits derived randomly or from
quantum algorithms or inspired by applications can be used to probe low-level as
well as high-level performance information of quantum platforms. In other words,
the design of the quantum circuits can influence how effectively it probes certain
metrics, but it does not strictly determine the level of the benchmark. In the
next section, we briefly look at low-level and high-level quantum benchmarking.

Low-Level Quantum Benchmarking. Low-level benchmarking of quantum
computers often focuses on hardware performance information pertaining to
error rates, coherence times, qubit connectivity, gate operations, fidelity, etc.
As an instance, QASMBench [12] is an open-source application-centric low-level
benchmark suite based on the OpenQASM assembly representation; this suite
aims at evaluating and characterizing the properties of emerging NISQ devices,
estimating the potential of optimization from quantum transpilers, and bench-
marking the performance of classical quantum simulators. The authors propose
four circuit metrics to assess the execution efficiency, susceptibility to NISQ
error, and potential gain from low-level optimizations: gate density, retention
lifespan, measurement density, and entanglement variance. Selected test cases
are from the domains of chemistry, simulation, linear algebra, machine learning,
optimization, etc.

High-Level Quantum Benchmarking. This type of benchmarking abstracts
low-level details, but instead focuses on the performance characterization by met-
rics such as algorithm accuracy, speed in terms of execution times, and resource
usage, which is critical in understanding scalability. These metrics in general,
give more information about the effectiveness of a quantum computing system
in solving particular problems. To illustrate high-level benchmarks, Eviden’s
universal metric- Q-Score.TM [13], designed to measure the actual performance
of quantum processors when solving an optimization problem, provides insight
into resource usage. The metric measures the maximum number of qubits that
can be used effectively to solve the MaxCut combinatorial optimization problem
with the QAOA. SupermarQ [3] again, uses a set of feature vectors derived from
a combination of high-level (and low-level) metrics such as qubit interactions,
gate operations, number of qubits, qubit activity, etc., to estimate the represen-
tativeness of chosen applications. Applications are benchmarked using high-level
metrics such as the Hellinger distance, and a score obtained by comparing ideal
and experimental values.

3 The NEASQC Benchmarking Methodology Proposal

The NEASQC Benchmark Suite (TNBS) is composed of a methodology to define
test cases and a set of tests and the rules to execute them and report their results.
The NEASQC benchmarking methodology is application driven. It is based on
quantum subroutines (or kernels), that are low-level quantum algorithms (such

TNBS: A Kernel-Based Benchmarking for Digital Quantum Computers 33

as state preparation or phase estimation). These subroutines have been extracted
from the use cases of QC; generally, they form the basis for high-level quantum
applications such as the Shor’s algorithm, VQE, etc.

The methodology has been designed taking into account the next objectives:
Objective 1: The benchmark suite must be representative. This is enabled by
the selection of benchmark cases that are extracted from workloads commonly
executed in quantum platforms.
Objective 2: The methodology has to holistically and procedurally characterize
the performance of all the components of the execution stack. This implies (1)
the design of a benchmark case definition template, (2) the design of formal
procedures for the execution of the benchmarks and results collection, and (3)
the selection of relevant metrics for evaluating and comparing different platforms.
Objective 3: The methodology must be resilient to near and mid-term techno-
logical changes in quantum technology. This implies that each benchmark may
be proposed for a different number of qubits and their results should be veri-
fiable classically in all cases. Also, it must permit the execution on distributed
platforms.
Objective 4: The methodology must help the developers and manufactures to
improve their solutions from application layer to hardware devices. As such, the
methodology must be agnostic to the hardware and software, defining each case
from mathematical or procedure descriptions.

The rest of this section starts with the elements required to define a bench-
mark test case (Sect. 3.1) and a description of general aspects of the evaluation
metrics 3.2.

3.1 Benchmark Case Definition

A core component of the TNBS methodology is a well-defined template for the
specification of the benchmark cases. The main components of this template are:
the kernel, the benchmark test case, the execution procedure and the example
implementation.

Kernel. A kernel is a core quantum subroutine common to several quantum
applications. From a computational perspective, a kernel is a task or routine
to be run on a quantum device. Hence, it should have some part that should
be implemented as a (or several) quantum circuit(s). Examples are quantum
probability loading and quantum phase estimation.

In TNBS, kernel specification is done mathematically or procedurally. This
definition style ensures that the kernel can be implemented at will, not being
necessarily linked to a given algorithmic approach or implementation which may
favour some quantum platforms over others introducing unwanted bias in the
evaluation.

Benchmark Test Case. A Benchmark Test Case (BTC) is a scalable applica-
tion (in the number of qubits) restricted only to evaluating the kernel associated

34 G. Ferro et al.

with a given benchmark case. The BTC cannot involve interaction with other
classical routines, as is the case of classical optimizers in variational algorithms
(but it can include classical sections to prepare data or postprocess quantum
results to return a valid result). A BTC is designed to be verifiable easily by
classical means and is also suitable for execution in QPUs of the NISQ era.
Although, it should be defined to be used with fault-tolerant QPUs as well.

In addition to time-performance measurements, TNBS is designed to use
kernel-dependent metrics to measure the accuracy of the outputs generated by
the BTC. The model of verification is a classical/analytical model, and because
verification is kernel-dependent, it may be different for each benchmark test case.

As a consequence, the performance of a BTC on a quantum platform is
characterized by two metrics: accuracy and speed. The accuracy of the BTC
is verified against a ground-truth obtained from a classical calculation or an
analytical method; the accuracy metrics are usually tailored for each kernel.
Speed measures the execution time of the BTC.

Execution Procedure. The execution of a BTC must follow a well-specified
protocol which may be different for each benchmark case. This procedure is
usually composed of:

1. A preparation phase, where some preprocessing of the data may be done
before inputs are sent to the quantum circuit. This preparation takes place
in a classical CPU.

2. The execution of the quantum circuit, which takes place in the QPU (or in
several QPUs). This is the focus of our study.

3. A post-processing phase, where the raw outputs of the quantum circuit may
be transformed to produce the required output.

This execution procedure should realize the execution of the BTC for circuits
of different number of qubits. Also, it calculates the number of shots of the
quantum circuits to generate results within a given confidence interval and the
number of repetitions of the procedure to guarantee that the results are later
verifiable and comparable.

Implementation. By definition, TNBS benchmark cases do not have an offi-
cial implementation. Still, we intend to provide a sample myQLM-compatible
implementation for each benchmark case, just for illustration purposes. The
mathematical or algorithmic definition of the kernels is motivated by our thesis
that linking a case to a given implementation, or even an algorithmic approach,
can bias the case and favor some platforms over others.

3.2 Evaluation Metrics

In this section, we further discuss the metrics used for the evaluation of the BTC.
As mentioned above, these metrics evaluate two different aspects: the accuracy
of the computation and its speed.

TNBS: A Kernel-Based Benchmarking for Digital Quantum Computers 35

Accuracy Metrics. The accuracy metrics must measure the quality of the
generated output against a classically-generated ground-truth. As the outputs
generated may be different for each specific problem, these metrics are usually
defined per case, and even more, each case can have several metrics. Examples
of such metrics are the Kolmogorov-Smirnov (KS) and Kullback-Liebler (KL)
divergence used in the Probability Loading BTC.

Speed Metrics. Speed is evaluated through a timing analysis. This analysis is
carried out through the execution of the case following the execution procedure.
Because of the hybrid nature of quantum computing (and even the existence of
hybrid solutions for some algorithms), TNBS BTCs must measure separately the
execution time of the classical preprocessing and postprocessing phases and the
quantum demands. This is why the timing is decomposed into three components:
(1) The wall time, which is the total execution time of the complete execution
procedure of the BTC, (2) The quantum time, which is the execution time of
the quantum circuit(s), and (3) The classical time, which is the execution time
of the non-quantum parts of the execution procedure (pre and post-processing
tasks).

These metrics permit the identification of the bottlenecks (if quantum or
classical) and can cope with future algorithms that permit the interaction of
quantum and classical codes wisely.

Result Reporting. The results of each benchmark case on a given platform
are reported using a JSON file which contains the specification of the relevant
components of the stack, other relevant information such as the date and time
where the experiment took place, and the outputs generated for each case. A
JSON schema is provided to allow the executors to generate the output and
verify their correctness before submission to the TNBS centralized repository of
results. This repository will have a website that allows the comparison of the
benchmark results of different platforms.

4 Probability Loading: A Sample Benchmark Case

In this section, we provide, as an example of a benchmark case, a short descrip-
tion of the Probability Loading (PL) use case of the TNBS. First of all, the
PL kernel has been selected as a benchmark case because it is a building block
of several quantum algorithms like the Harrow-Hassidim-Lloyd (HHL) [14], the
quantum principal component analysis (PCA) [15], the quantum amplitude esti-
mation algorithms, etc. In these algorithms, the PL kernel is usually used at
the initialization part of the circuit to load a probability distribution in a set of
qubits. This kernel is computationally intensive because its number of operations
typically scales as .∼ 2n, . n being the number of qubits to be initialized.

In the following sections, we explain in turn, the kernel specification, the
associated BTC and how its performance is characterized.

36 G. Ferro et al.

4.1 Kernel Specification

As we established in the previous section, in TNBS, kernels are defined mathe-
matically or algorithmically, and this is the kind of definition that we are giving
for the PL kernel. Given a list of normalized vectors,

.V = {v0, v1, ·, v2n−1}, vi ∈ C
2n ;

2n−1∑

i=0

|vi|2 = 1 (1)

The main task of the PL kernel is to generate an operator . U, from the
normalised vector . V, which satisfies the equation:

.U|0〉n =
2n−1∑

i=0

vi|i〉n (2)

Hence, this kernel can be used to load a fixed normal probability density
function, .Nµ,x. Such that, the Eq. 1 can be re-expressed as:

.P = {p0, p1, ·, p2n−1}, pi ∈ [0, 1];
2n−1∑

i=0

|pi|2 = 1 (3)

Thus, the Eq. 2 becomes:

.U|0〉n =
2n−1∑

i=0

√
pi|i〉n (4)

4.2 PL Benchmark Test Case

In the TNBS methodology, the performance of the kernel must be evaluated in
the context of a BTC. The BTC of the PL kernel consists of loading a probability
distribution in a set of qubits; this BTC can be defined for an arbitrary number
of qubits, . n, and its output can be compared to the actual probability distri-
bution. The required operator, . U , is obtained by encoding a list of normalized
probabilities, .Pnorm(x), into a n-qubits quantum circuit. This list of normalized
probabilities, .Pnorm(x), is created from an array, . x , which is bounded by a fixed
mean, . μ̃ and fixed standard deviation, . σ̃. This list can feed different PL algo-
rithms from the literature prepared to generate the corresponding U operator
(check one of them in [16]).

The quantum operation, .U |0〉n in Eq. 4 is executed, measuring the output
qubits a numer of times given by:

.nshots = min

(
106,

100
min(Pnorm(xi)

)
(5)

These measurements reconstruct a probability distribution, . Q . And the recon-
struction is done by calculating the ratio of times in which a certain state . |i〉n
is obtained from .nshots.

TNBS: A Kernel-Based Benchmarking for Digital Quantum Computers 37

4.3 Performance

The accuracy of the outputs of the BTC is calculated by comparing the values
of the measured probability distribution, .Q with those of the actual normalized
probability distribution, .Pnorm , using two metrics:

– The Kolmogorov-Smirnov (KS), between .Q and .Pnorm .

.KS = max

⎛

⎝

∣∣∣∣∣∣

i∑

j=0

Pnorm(xj) −
i∑

j=0

Qj

∣∣∣∣∣∣
, ∀i = 0, 1, · · · , 2n − 1

⎞

⎠ (6)

– and The Kullback-Leibler divergence (KL).

.KL(Q/Pnorm) =
2n−1∑

j=0

Pnorm(xj) ln
Pnorm(xj)
max(ε,Qk)

(7)

Fig. 1. KS and p-values obtained in ideal simulations for 4 and 6 qubits using 1099
and 177 shots respectively

38 G. Ferro et al.

where .ε = min(Pnorm(xj))∗10−5, which guarantees the logarithm exists when
. Qk = 0

Also, the Chi- Square test, . χ2, generates a p-value from .nshotsQ and
.nshotsPnorm . If this p-value is lower than 0.05, the output of the BTC is labelled
as not valid. In addition, the speed of a platform to execute the BTC is obtained
by measuring the elapsed and the quantum execution times of the BTC. As a
sample test, Figs. 1(a), b c, (d) are boxplots of the KS and p-values obtained for
4 and 6 qubits respectively on the myQLM ideal simulator.

5 Conclusions

The NEASQC Benchmark Suite (TNBS) proposes a methodology based on ker-
nels, i.e., subroutines common to several user-level applications. Once the kernels
are identified, they are described mathematically or procedurally, allowing the
implementation of different versions depending on the advance of the software or
the specific hardware characteristics. To evaluate the performance and quality
of the implementation, one test case, coined as Benchmark Test Case (BTC),
accompanies the kernel definition. This case is defined in such a way that it can
be verified easily using classical or analytical procedures, it must scale up to a
reasonable number of qubits, and it must include metrics to evaluate the qual-
ity of the results. The Probability Loading (PL) benchmark case is provided as
a benchmark case example. As with any other benchmark, the performance is
measured, but in addition to the total wall-time, the times spent in the CPUs
and the QPUs are also reported separately.

Acknowledgments. All authors acknowledge the European Project NExt Applica-
tionS of Quantum Computing (NEASQC), funded by Horizon 2020 Program inside the
call H2020-FETFLAG-2020-01 (Grant Agreement 951821). Grant PID2022-136435NB-
I00, funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making
Europe”, EU. Grant for the Predoctoral contract of O.E. Odubanjo ref. PREP2022-
000281 funded by MCIN/AEI/10.13039/501100 011033 and by ESF+. The authors also
acknowledge Galicia Supercomputing Center (CESGA) for providing access to Finis-
Terrae III supercomputer with financing from the Programa Operativo Plurirregional
de Espaa 2014-2020 of ERDF, ICTS-2019-02-CESGA-3. CITIC, as a center accredited
for excellence within the Galician University System and a member of the CIGUS Net-
work, receives subsidies from the Department of Education, Science, Universities, and
Vocational Training of the Xunta de Galicia. Additionally, it is co-financed by the EU
through the FEDER Galicia 2021-27 operational program (Ref. ED431G 2023/01).

References

1. Robledo-Moreno, J., et al.: Chemistry Beyond Exact Solutions on a Quantum-
Centric Supercomputer. arXiv:2405.05068 (2024)

2. Barral, D., et al.: Review of Distributed Quantum Computing. From single QPU
to High Performance Quantum Computing. arXiv:2404.01265 (2024)

http://arxiv.org/abs/2405.05068
http://arxiv.org/abs/2404.01265

TNBS: A Kernel-Based Benchmarking for Digital Quantum Computers 39

3. Tomesh, T., et al.: SupermarQ: a scalable quantum benchmark suite. In: 2022
IEEE International Symposium on HPCA, pp. 587–603 (2022)

4. Mills, D., Sivarajah, S., Scholten, T.L., Duncan, R.: Application-motivated, holistic
benchmarking of a full quantum computing stack. Quantum 5, 415 (2021)

5. Resch S., J., Karpuzcu, U.R.: Benchmarking quantum computers and the impact
of quantum noise. ACM Comput. Surv. 54(7), 1–35 (2021)

6. Cross, A.W., J., Bishop, L.S., Sheldon, S., Nation, P.D.: Validating quantum com-
puters using randomized model circuits. Phys. Rev. A 100(032328) (2019)

7. Dong, Y., Lin, L.: Random circuit block-encoded matrix and a proposal of quantum
linpack benchmark. Phys. Rev. A 103(062412) (2021)

8. Wack, A., et al.: Quality, Speed and Scale: three key attributes to measure the
performance of near-term quantum computers. arXiv:2110.14108 (2021)

9. Chuang, I.N., Nielsen, M.A.: Prescription for experimental determination of the
dynamics of a quantum black box. J. Mod. Opt. 44(11–12), 2455–2467 (1997)

10. Kobayashi, F., Mitarai, K., Fujii, K.: Parent Hamiltonian as a benchmark problem
for variational quantum eigensolvers. Phys. Rev. A 105(052415), (2022)

11. Lubinski, T., et al.: Application-Oriented Performance Benchmarks for Quantum
Computing. arxiv:2110.03137 (2023)

12. Li, A., Stein, S., Krishnamoorthy, S., Ang, J.: QASMBench: a low-level quantum
benchmark suite for NISQ evaluation and simulation. ACM Trans. Quantum Com-
put. 4(2) (2023)

13. Martiel, S., Ayral, T., Allouche, C.: Benchmarking quantum coprocessors in an
application-centric, hardware-agnostic, and scalable way. IEEE Trans. Quant.
Eng., 1 (2021)

14. Harrow, A.W., Hassidim, A., Seth, L.: Quantum algorithm for linear systems of
equations. Phys. Rev. Lett. 103(15) (2009)

15. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis.
Nat. Phys. 10(9), 631–633 (2014)

16. Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of quantum-logic circuits.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(6), 1000–1010 (2006)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://arxiv.org/abs/2110.14108
http://arxiv.org/abs/2110.03137
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	TNBS: A Kernel-Based Benchmarking for Digital Quantum Computers
	1 Introduction
	2 Review of the State of the Art of Quantum Benchmarking
	2.1 Low-Level and High-Level Quantum Benchmarking

	3 The NEASQC Benchmarking Methodology Proposal
	3.1 Benchmark Case Definition
	3.2 Evaluation Metrics

	4 Probability Loading: A Sample Benchmark Case
	4.1 Kernel Specification
	4.2 PL Benchmark Test Case
	4.3 Performance

	5 Conclusions
	References

