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Abstract. Quantum compilation, critical for bridging high-level quan-
tum programming and physical hardware, faces unique challenges dis-
tinct from classical compilation. As quantum computing advances, scal-
able and efficient quantum compilation methods become necessary. This 
paper surveys the landscape of quantum compilation, detailing the 
processes of qubit mapping and circuit optimization, and emphasizing 
the need for integration with classical computing to harness quantum 
advantages. Techniques such as Variational Quantum Eigensolver (VQE) 
exemplify hybrid approaches, highlighting the potential synergy between 
quantum and classical systems. It is concluded that, while quantum com-
pilation retains many classic methodologies, it introduces novel complex-
ities and opportunities for optimization and verification, essential for the 
evolving field of quantum computing. 

Keywords: quantum computing · compilation process · quantum 
languages · qubit allocation 

1 Introduction 

With the current growth in the field of quantum computing in recent years, 
the need for efficient quantum compilation becomes increasingly apparent as 
researchers strive to harness the potential of quantum processors. Quantum 
compilation, like its classic counterpart, plays a pivotal role in bridging the 
gap between high-level quantum programming languages and physical quan-
tum hardware. However, as quantum computing systems continue to evolve, 
the demand for scalable and efficient quantum compilation methods arises. This 
paper delves into the realm of quantum compilation, exploring techniques for 
mapping qubits to clusters, optimising quantum circuits for parallel execution, 
and managing the complexity of large-scale quantum programs. The princi-
pal aim is to organise the current information pertaining to quantum compi-
lation and guide it into a scheme similar to classic compilation, facilitating a 
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comprehensive understanding of the quantum computing landscape. However, 
within this survey, an examination of quantum computing interpreters is omit-
ted because they are not considered to be of interest in terms of efficiency. This is 
attributed to the fact that each quantum circuit performs a predetermined num-
ber of shots. Consequently, the contention is that it is more efficient to compile 
and execute the circuit N times rather than interpreting it N times. 

Section 2 will first give a brief introduction to the modular functioning of a 
classic compiler, and then, in Sect. 3, we will discuss the main novelties intro-
duced by quantum compilation and how these can be integrated into a compiler 
scheme. Finally, Sect. 4 shows the conclusions drawn from this survey. 

2 Classic Compilation 

Compilers are crucial in software engineering, translating high-level program-
ming languages into machine code and optimizing machine resources. They fol-
low a structured process involving analysis and synthesis stages, as depicted in 
Fig. 1. The emergence of quantum computing has extended these principles to 
quantum compilers, which adapt these phases for quantum programming lan-
guages, highlighting the enduring relevance of classic compiler methodologies in 
new computing paradigms [ 4]. 

Fig. 1. Sequential phases of classic compiler process - analysis and synthesis stages. 

The analysis phase marks the start of the compilation process, focusing on 
lexical, syntactical, and semantic evaluations to detect errors and form an inter-
mediate representation. It includes tokenization, syntax tree construction, and 
semantic analysis like type-checking. The front-end generates an Intermediate 
Representation (IR), crucial for compiler efficiency and adaptability across vari-
ous languages. This IR facilitates the compilation of languages like C++, Rust, 
and Java into popular Instruction Set Architectures (ISAs), enhancing code effi-
ciency and quality through machine-independent optimizations. 

The final phase in the compilation scheme, the code generator, is crucial as 
it adapts the code to the target machine’s architecture, highlighting significant
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differences between classic and quantum computing. This phase ensures the tar-
get program adheres to the semantics of the source program while optimizing 
resource utilization on the target machine. Key tasks included in the code gen-
erator phase include the following: instruction selection, register allocation and 
order of evaluation. 

Instruction selection, which chooses the appropriate machine instructions 
or quantum logic gates, depending on whether the target is a classic or quan-
tum computer; register allocation, crucial for managing limited computational 
resources like registers in classic computing or qubits in quantum computing; and 
order of evaluation, which determines the most efficient execution sequence 
for independent instructions. 

The compilation scheme shown is the one that has been classicly used in 
compiler development in recent years. Therefore, there are many questions to be 
asked once quantum computing is incorporated: is the same development scheme 
being followed? And if so, should this be the scheme to follow? These questions 
will be addressed in the Sect. 3 on quantum compilation. 

3 Quantum Compilation 

When discussing quantum compilation, several pressing questions emerge: Is 
the process carried out in a purely quantum manner? How does it differ from 
classical compilation? What challenges and bottlenecks are intrinsic to quantum 
compilation? These questions will be addressed as we explore the landscape of 
quantum compilation. 

To address whether the compilation is done entirely in a quantum fashion, it 
is enlightening to study the current state of quantum computing. Most quantum 
computers today are either quantum annealers or small-scale universal quantum 
computers in the NISQ era. These systems lack the capability to compile a 
comprehensive programming language. 

Understanding this requires revisiting the definition of computation. There is 
no consensus on what “computing” is due to many advances, so an absolute def-
inition is pending in the literature [ 15]. What we understand today is rooted in 
the 1930’s concept of Automatic Computation (AC), aiming for machines to per-
form mathematical calculations automatically. Alan Turing’s abstract machine, 
the Turing machine, forms the basis for all computing systems [ 49]. Compu-
tation, based on Turing’s definition, is a process where a formal mathematical 
system operates according to a set of rules in a given physical architecture [ 14]. 

A computer executes automatic calculations, traditionally using binary com-
putation, discerning two states, 0 and 1. From vacuum tubes to multicore pro-
cessors, this binary model has been the foundation of computational implemen-
tations. However, the landscape shifted with quantum computation and Shor’s 
algorithm [ 43]. Beyond Shor’s demonstration of quantum superiority, physical 
limitations of silicon transistors also spurred interest. Will quantum computing 
replace the current paradigm? Tentatively, no. 

Quantum computers can theoretically perform any task a classical computer 
can, but with different efficiencies. For some calculations, classical computers
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take exponentially more time. This difference is rooted in their principles. Clas-
sical computing uses the Cartesian product of systems with two distinct states, 
while quantum computing employs the tensor product of Hilbert spaces with a 
basis of two elements, leading to a larger computational space due to superposi-
tion and entanglement. However, this does not mean basic operations like NOT 
are inherently more efficient on a quantum platform. This computational parity 
explains why quantum computing will not replace the current paradigm. Key 
parts of a computer-processors, memory, and I/O devices-differ in quantum sys-
tems. Specifically, quantum memory and I/O devices pose challenges. Quantum 
mechanics nature does not align with the needs of I/O devices, which require 
constant information exchange. Using quantum computers for I/O is inefficient 
as it reduces qubits to bits. 

In quantum computing, memory, often referred to as quantum memory, 
sparks debate. Quantum memory is volatile, based on quantum Random Access 
Memory (qRAM) [ 20, 25]. Decoherence, a physical phenomenon, limits non-
volatile quantum memory, making full quantum computation inoperable. Qubits 
are idealized as closed systems, but real quantum experiments can not achieve 
this, leading to decoherence. 

Even if quantum processors, memory, and I/O devices were perfect, would 
quantum computers replace classical ones? No. Classical computation performs 
well in many fields with 100% certainty, a major lack in quantum computation. 
Replacing classical systems does not make sense, but integrating quantum and 
classical computing offers benefits. Hybrid quantum algorithms like the varia-
tional algorithms exemplify the potential synergy between quantum and classical 
computing, solving specific problems like molecular simulations and optimiza-
tion [ 47]. These hybrid algorithms represent a collaborative approach, harnessing 
the strengths of quantum computing while mitigating challenges like error cor-
rection and hardware limitations [ 17]. 

After analyzing quantum computation’s future, we can answer the first ques-
tion: no, quantum compilation is not fully quantum. Analyzing the state of the 
art shows quantum compilation is a classic task with the quantum workload left 
for execution. Moreover, the workflow mirrors classical compilation. There is an 
analysis phase, termed the front-end, and a synthesis phase, termed the back-
end, linked via a quantum Intermediate Representation (qIR), analogous to the 
classical IR. These phases persist throughout quantum computation, with the 
qIR abstracting multiple target types in the quantum scene. 

The following section will describe the analysis phase, similar to its classi-
cal counterpart, followed by a section analyzing the synthesis phase, the most 
complex and divergent from classical counterparts due to its connection with 
quantum architecture.
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Fig. 2. Example of codification of a circuit. 

3.1 Compilation Phases for Quantum Computing 

Analysis Phase. This phase bears the closest resemblance to the classic com-
pilation world. This similarity should come as no surprise because the problem 
at hand is exactly the same as in classic compilation: translating a high-level 
language into an IR (referred to as qIR in this context) that will subsequently 
be utilized in the synthesis phase. To gain a better understanding of how this 
problem persists within the quantum workflow, we can engage in an abstraction 
exercise using the circuit presented in Fig. 2a. For instance, this circuit can be 
implemented using the structure outlined in the pseudocode found in Fig. 2b. 
The process of generating an object used for translation into qIR will entail the 
same steps as those outlined in Sect. 2. It will be presented below with a sim-
plified version of each step, sufficiently profound to illuminate the fundamental 
concepts. 

1. Lexical Analyzer. It detects q0, q1, c0, c1, H, CNOT and Measure as identifiers, = as 
comparison operator and |0> as, for instance, a native token (such as integers 
or floats). So the lexical result for the line 1 and 5 of Fig. 2b could be:  

q0 = |0〉 ←→  {id,0} {=} {|0〉} 

c0 = Measure(q0) ←→ {id,3} {=} {id,6} {(} {id,0} {)} 

2. Syntax Analyzer. The previous lexical analysis is now fed into this phase in 
order to generate a parse tree, which will be generated following the grammar 
defined for the language. For the purpose of this work, a dummy grammar 
will be defined in order to define the parse tree of lines 1 and 6. 

E −→ id = ket | id = E | id(id) 
This grammar in conjunction with the lexical analysis defined above, produce 
the desired parse trees for lines 1 and 6, portrayed in Fig. 3a and Fig. 3b, 
respectively. 

3. Semantic Analyzer: In this phase, the parse tree generated in the previous 
step is used to verify the semantic consistency of the source code with the 
language’s definition. For instance, a possible check involves determining if 
the value |0〉 is valid for the q0 identifier and which type should be considered
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Fig. 3. Example of parse trees. 

for it. In this scheme, it is treated as a native value, similar to integers or 
floats. However, during this stage, it can be represented as a two-integer array, 
such as [0, 0], or any other suitable format, which can then be translated into 
an appropriate signal at the physical layer. 

This simplistic example suffices to achieve an important task: showing how 
similar it is the analysis phase in quantum computing in comparison with classic 
computing. In fact, if someone abstracts from the common concepts of gates, 
qubits and measurements, and reads the pseudocode with its grammar and parse 
trees it is impossible for them to tell whether the language purpose is modeling 
quantum computing or, for example, embedded computing. 

This is precisely why, when conducting a current survey of the state-of-the-art 
in quantum programming languages [ 1, 18, 42], numerous libraries emerge, being 
among them a set of the most used technologies of the quantum computing 
domain, as it is the  case  for Qiskit [  13], Circ [ 16], ProjectQ [ 45], Pennylane [ 9], 
among others. Table 1 lists the different software tools for the development of 
quantum applications. In this survey, these tools have been categorised into four 
distinct categories: 

– Frameworks and libraries: offering pre-written code to enhance efficiency. 
While libraries provide specific functionalities allowing developers to maintain 
control over the application’s flow, frameworks dictate the project’s structure 
through “inversion of control”, where the framework calls the developer’s code. 
Despite some software being labeled differently, most tools like Qiskit, Cirq, 
ProjectQ, and PennyLane, as well as others such as Qulacs, are generally 
categorized under frameworks and libraries without a strict adherence to the 
’inversion of control’ principle. 

– Language extensions: enhance existing languages by adding features, tools, 
or syntax. These extensions are not standalone languages but augment the 
base language’s capabilities. Notably, QCOR extends C++ and is highlighted 
for its relevance, while Quipper, although no longer in use, is significant in 
quantum software literature. 

– Standalone languages: self-sufficient languages with their own syntax, 
semantics, and standard libraries, allowing for the development of various 
applications independently of other languages. It specifically highlights quan-
tum programming languages.
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Table 1. Programming software for quantum computing. 

Frameworks libraries Language extensions Standalone language Quantum 
process 
algebras 

Name Basis Name Basis Imperative Functional 
Blueqat 

Python 

QCOR [ 36] C++ isQ [ 22] cQPL [ 34] CQP [ 36] 
Cirq [ 16] Proto-Quipper [ 41] Haskell LanQ [ 37] Q [  10] eQPAlg [ 23] 
Penny Lane [ 9] Quipper [ 21] Q# QFC [ 7] QPAlg [ 27] 
ProjectQ [ 45] LIQUi|〉 [ 51] F# QCL [ 53] QML [ 5] 
Perceval [ 24] Chisel-Q [ 31] Scala Q|SI〉 [ 30] QPL 
Qiskit [ 13] qGCL [ 52] GCL Quingo [ 2] QuaFL [ 29] 
Quantify qPCF [ 32] PCF QWIRE [ 39] Qunity [ 50] 

Strawberry Fields Lambda-q [ 35] 
Lambda 
Calculus 

Scaffold [ 3] 

Tequila λq [ 48] Silq [ 11] 
Quantum++ [ 19] 

C++QuEST [ 26] 
Qulacs [ 46] 
QuantumOptics.jl [ 28] 

Julia 
Yao.jl [ 33] 
Cove [ 40] C# 

– Quantum process algebras: are theoretical constructs aimed at modeling 
and analyzing quantum computing systems, especially in quantum communi-
cation. They build on traditional process algebras by incorporating quantum 
mechanics concepts like states, operations, entanglement, and superposition. 
These algebras serve as formal languages for accurately describing and rea-
soning about quantum processes, aiding in the development and verification 
of quantum algorithms and protocols. Although these frameworks are not 
currently in use, they are recognized for their significant contributions to the 
initial phases of quantum software development. 

Understanding the difference between libraries and programming language 
extensions in quantum computing can be challenging. For instance, Qiskit oper-
ates as a library within Python, offering tools like the QuantumCircuit for 
building quantum circuits without altering Python’s syntax. In contrast, QCOR 
extends C++ by introducing quantum-specific constructs, such as the __qpu__ 
keyword for quantum kernels, directly integrating quantum capabilities into the 
language’s syntax. This example is shown clearly in Fig. 4. 

Synthesis Phase. In classic compilation, each line of code translates to 
machine-level instructions. However, in quantum languages, most components 
are classical except for the quantum circuit part, which is generated by the clas-
sical elements of the program. Quantum computing languages typically exist as 
libraries or extensions of classical languages to optimize quantum circuits for 
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Fig. 4. Example of the difference between a library and a language extension. 

minimal gate count and depth. The synthesis phase in quantum compilation is 
crucial for generating these optimal circuits, whether for actual quantum com-
puters or simulators. This review focuses on the quantum aspects of this phase, 
highlighting the unique challenges of quantum compilation. 

The synthesis phase of quantum compilation can be broadly divided into 
two main components: circuit optimization and qubit mapping. Of course,  
these two parts are not the only ones which can be included in the synthesis 
phase. Different techniques and processes such as error correction, error mitiga-
tion, analysis of metrics extracted from the quantum circuit and so on and so 
forth, can be included in this phase. But there is not an agreement among the 
different compilers and software tools whether other techniques are necessary in 
this phase. 

Circuit optimization operates on the principle of modifying a quantum circuit to 
minimize a specific metric, essential due to the complexity of quantum comput-
ers. The choice of metric varies: for NISQ devices, reducing the count of two-qubit 
gates might be crucial, while for others, minimizing circuit depth due to qubit 
decoherence may be preferred. The main challenge in circuit optimization is 
ensuring the modified circuit retains its original functionality. This necessitates 
verification to confirm the circuit still performs the same computational task. 
Thus, the optimization phase can be divided into two subphases: improvement 
and verification. 

The aim of circuit improvement is to enhance the performance and effi-
ciency of quantum circuits through techniques such as removing redundant 
inverse gates, optimizing subcircuits, and employing various algorithms for bet-
ter circuit synthesis. Figure 5 illustrates an example of circuit improvement using 
gate fusion and deletion. As can be seen, gates U2 and U3 are susceptible to 
be fused, while the rotations in the Z axis do not modify the measurement in 
the computational basis, therefore they can be eliminated. Conversely, circuit 
verification ensures the correctness of these optimized quantum circuits, verify-
ing that the transformations applied during optimization preserve the intended 
functionality, with techniques like [ 6] and ZX-Calculus [ 12] maintaining cir-
cuit integrity. In quantum compilation, while many compilers like Qiskit, Pro-
jectQ, and ScafCC focus primarily on optimization, the integration of verifica-
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Fig. 5. Example of the optimization of a circuit applying gate fusion techniques. 

tion underscores the importance of ensuring circuit correctness throughout the 
compilation process. 

Qubit mapping: allocation and routing is analogous to register allocation in clas-
sical computing, aims to efficiently assign logical qubits to physical qubits in a 
quantum device, considering constraints like device connectivity [ 44], while mini-
mizing resources and execution time. This process is complicated by the varying 
error rates and connectivity of qubits, making it an NP-hard problem where 
exact algorithms are feasible only for small numbers of qubits. Consequently, 
heuristic and approximation techniques are often employed to find near-optimal 
solutions. This task involves two main processes: 

– Quantum allocation: refers to the process of physically assigning specific 
logical qubits in a quantum processor. For a correct qubit allocation, in most 
cases, it is necessary to add additional SWAP gates to move the qubit infor-
mation [ 38]. 

– Quantum routing: refers to the task of finding efficient paths for com-
munication between qubits in a quantum processor. This is important when 
mapping gates of two logic qubits that are not interconnected to maximise 
efficiency [ 8]. 

4 Conclusions 
This survey has examined the state-of-the-art in quantum compilation, focusing 
on the processes and challenges unique to quantum systems. Quantum compila-
tion retains many parallels with classical methodologies, including the analysis 
and synthesis phases, but it introduces significant complexities. The necessity 
for qubit mapping and circuit optimization, coupled with verification techniques, 
underscores the distinct nature of quantum compilation. Furthermore, the poten-
tial of hybrid algorithms, such as the variational algorithms, demonstrates the 
benefits of integrating quantum and classical computing. As quantum technology 
progresses, efficient and scalable compilation methods will be crucial for max-
imizing the performance and applicability of quantum processors. Future work 
should continue to explore and refine these methods, ensuring robust and effec-
tive compilation processes that can meet the demands of advancing quantum 
hardware. In the same way, it is also necessary to focus on innovative method-
ologies, such as distributed quantum compilers. 
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