
Silvina Caino-Lores · Demetris Zeinalipour ·
Thaleia Dimitra Doudali · David E. Singh ·
Gracia Ester Martín Garzón · Leonel Sousa ·
Diego Andrade · Tommaso Cucinotta ·
Donato D'Ambrosio · Patrick Diehl · Manuel F. Dolz ·
Admela Jukan · Raffaele Montella · Matteo Nardelli ·
Marta Garcia-Gasulla · Sarah Neuwirth (Eds.)

LN
CS

 1
53

85

Euro-Par 2024 International Workshops
Madrid, Spain, August 26–30, 2024
Proceedings, Part I

Euro-Par 2024:
Parallel Processing Workshops

Quantum Compilation Process: A Survey

F. Javier Cardama1(B) , Jorge Vázquez-Pérez1 , Tomás F. Pena1,2 ,
Juan C. Pichel1,2 , and Andrés Gómez3

1 Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS),
Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
{javier.cardama,jorgevazquez.perez,tf.pena,juancarlos.pichel}@usc.es
2 Departamento de Electrónica e Computación, Universidade de Santiago de

Compostela, 15782 Santiago de Compostela, Spain
3 Galicia Supercomputing Center (CESGA), Avda. de Vigo S/N,

15705 Santiago de Compostela, Spain
andres.gomez.tato@cesga.es

Abstract. Quantum compilation, critical for bridging high-level quan-
tum programming and physical hardware, faces unique challenges dis-
tinct from classical compilation. As quantum computing advances, scal-
able and efficient quantum compilation methods become necessary. This
paper surveys the landscape of quantum compilation, detailing the
processes of qubit mapping and circuit optimization, and emphasizing
the need for integration with classical computing to harness quantum
advantages. Techniques such as Variational Quantum Eigensolver (VQE)
exemplify hybrid approaches, highlighting the potential synergy between
quantum and classical systems. It is concluded that, while quantum com-
pilation retains many classic methodologies, it introduces novel complex-
ities and opportunities for optimization and verification, essential for the
evolving field of quantum computing.

Keywords: quantum computing · compilation process · quantum
languages · qubit allocation

1 Introduction

With the current growth in the field of quantum computing in recent years,
the need for efficient quantum compilation becomes increasingly apparent as
researchers strive to harness the potential of quantum processors. Quantum
compilation, like its classic counterpart, plays a pivotal role in bridging the
gap between high-level quantum programming languages and physical quan-
tum hardware. However, as quantum computing systems continue to evolve,
the demand for scalable and efficient quantum compilation methods arises. This
paper delves into the realm of quantum compilation, exploring techniques for
mapping qubits to clusters, optimising quantum circuits for parallel execution,
and managing the complexity of large-scale quantum programs. The princi-
pal aim is to organise the current information pertaining to quantum compi-
lation and guide it into a scheme similar to classic compilation, facilitating a
c© The Author(s) 2025
S. Caino-Lores et al. (Eds.): Euro-Par 2024, LNCS 15385, pp. 100–112, 2025.
https://doi.org/10.1007/978-3-031-90200-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-90200-0_9&domain=pdf
http://orcid.org/0000-0003-4909-9972
http://orcid.org/0009-0002-1442-4181
http://orcid.org/0000-0002-7622-4698
http://orcid.org/0000-0001-9505-6493
http://orcid.org/0000-0001-7272-8488
https://doi.org/10.1007/978-3-031-90200-0_9

Quantum Compilation Process: A Survey 101

comprehensive understanding of the quantum computing landscape. However,
within this survey, an examination of quantum computing interpreters is omit-
ted because they are not considered to be of interest in terms of efficiency. This is
attributed to the fact that each quantum circuit performs a predetermined num-
ber of shots. Consequently, the contention is that it is more efficient to compile
and execute the circuit N times rather than interpreting it N times.

Section 2 will first give a brief introduction to the modular functioning of a
classic compiler, and then, in Sect. 3, we will discuss the main novelties intro-
duced by quantum compilation and how these can be integrated into a compiler
scheme. Finally, Sect. 4 shows the conclusions drawn from this survey.

2 Classic Compilation

Compilers are crucial in software engineering, translating high-level program-
ming languages into machine code and optimizing machine resources. They fol-
low a structured process involving analysis and synthesis stages, as depicted in
Fig. 1. The emergence of quantum computing has extended these principles to
quantum compilers, which adapt these phases for quantum programming lan-
guages, highlighting the enduring relevance of classic compiler methodologies in
new computing paradigms [4].

Fig. 1. Sequential phases of classic compiler process - analysis and synthesis stages.

The analysis phase marks the start of the compilation process, focusing on
lexical, syntactical, and semantic evaluations to detect errors and form an inter-
mediate representation. It includes tokenization, syntax tree construction, and
semantic analysis like type-checking. The front-end generates an Intermediate
Representation (IR), crucial for compiler efficiency and adaptability across vari-
ous languages. This IR facilitates the compilation of languages like C++, Rust,
and Java into popular Instruction Set Architectures (ISAs), enhancing code effi-
ciency and quality through machine-independent optimizations.

The final phase in the compilation scheme, the code generator, is crucial as
it adapts the code to the target machine’s architecture, highlighting significant

102 F. J. Cardama et al.

differences between classic and quantum computing. This phase ensures the tar-
get program adheres to the semantics of the source program while optimizing
resource utilization on the target machine. Key tasks included in the code gen-
erator phase include the following: instruction selection, register allocation and
order of evaluation.

Instruction selection, which chooses the appropriate machine instructions
or quantum logic gates, depending on whether the target is a classic or quan-
tum computer; register allocation, crucial for managing limited computational
resources like registers in classic computing or qubits in quantum computing; and
order of evaluation, which determines the most efficient execution sequence
for independent instructions.

The compilation scheme shown is the one that has been classicly used in
compiler development in recent years. Therefore, there are many questions to be
asked once quantum computing is incorporated: is the same development scheme
being followed? And if so, should this be the scheme to follow? These questions
will be addressed in the Sect. 3 on quantum compilation.

3 Quantum Compilation

When discussing quantum compilation, several pressing questions emerge: Is
the process carried out in a purely quantum manner? How does it differ from
classical compilation? What challenges and bottlenecks are intrinsic to quantum
compilation? These questions will be addressed as we explore the landscape of
quantum compilation.

To address whether the compilation is done entirely in a quantum fashion, it
is enlightening to study the current state of quantum computing. Most quantum
computers today are either quantum annealers or small-scale universal quantum
computers in the NISQ era. These systems lack the capability to compile a
comprehensive programming language.

Understanding this requires revisiting the definition of computation. There is
no consensus on what “computing” is due to many advances, so an absolute def-
inition is pending in the literature [15]. What we understand today is rooted in
the 1930’s concept of Automatic Computation (AC), aiming for machines to per-
form mathematical calculations automatically. Alan Turing’s abstract machine,
the Turing machine, forms the basis for all computing systems [49]. Compu-
tation, based on Turing’s definition, is a process where a formal mathematical
system operates according to a set of rules in a given physical architecture [14].

A computer executes automatic calculations, traditionally using binary com-
putation, discerning two states, 0 and 1. From vacuum tubes to multicore pro-
cessors, this binary model has been the foundation of computational implemen-
tations. However, the landscape shifted with quantum computation and Shor’s
algorithm [43]. Beyond Shor’s demonstration of quantum superiority, physical
limitations of silicon transistors also spurred interest. Will quantum computing
replace the current paradigm? Tentatively, no.

Quantum computers can theoretically perform any task a classical computer
can, but with different efficiencies. For some calculations, classical computers

Quantum Compilation Process: A Survey 103

take exponentially more time. This difference is rooted in their principles. Clas-
sical computing uses the Cartesian product of systems with two distinct states,
while quantum computing employs the tensor product of Hilbert spaces with a
basis of two elements, leading to a larger computational space due to superposi-
tion and entanglement. However, this does not mean basic operations like NOT
are inherently more efficient on a quantum platform. This computational parity
explains why quantum computing will not replace the current paradigm. Key
parts of a computer-processors, memory, and I/O devices-differ in quantum sys-
tems. Specifically, quantum memory and I/O devices pose challenges. Quantum
mechanics nature does not align with the needs of I/O devices, which require
constant information exchange. Using quantum computers for I/O is inefficient
as it reduces qubits to bits.

In quantum computing, memory, often referred to as quantum memory,
sparks debate. Quantum memory is volatile, based on quantum Random Access
Memory (qRAM) [20, 25]. Decoherence, a physical phenomenon, limits non-
volatile quantum memory, making full quantum computation inoperable. Qubits
are idealized as closed systems, but real quantum experiments can not achieve
this, leading to decoherence.

Even if quantum processors, memory, and I/O devices were perfect, would
quantum computers replace classical ones? No. Classical computation performs
well in many fields with 100% certainty, a major lack in quantum computation.
Replacing classical systems does not make sense, but integrating quantum and
classical computing offers benefits. Hybrid quantum algorithms like the varia-
tional algorithms exemplify the potential synergy between quantum and classical
computing, solving specific problems like molecular simulations and optimiza-
tion [47]. These hybrid algorithms represent a collaborative approach, harnessing
the strengths of quantum computing while mitigating challenges like error cor-
rection and hardware limitations [17].

After analyzing quantum computation’s future, we can answer the first ques-
tion: no, quantum compilation is not fully quantum. Analyzing the state of the
art shows quantum compilation is a classic task with the quantum workload left
for execution. Moreover, the workflow mirrors classical compilation. There is an
analysis phase, termed the front-end, and a synthesis phase, termed the back-
end, linked via a quantum Intermediate Representation (qIR), analogous to the
classical IR. These phases persist throughout quantum computation, with the
qIR abstracting multiple target types in the quantum scene.

The following section will describe the analysis phase, similar to its classi-
cal counterpart, followed by a section analyzing the synthesis phase, the most
complex and divergent from classical counterparts due to its connection with
quantum architecture.

104 F. J. Cardama et al.

Fig. 2. Example of codification of a circuit.

3.1 Compilation Phases for Quantum Computing

Analysis Phase. This phase bears the closest resemblance to the classic com-
pilation world. This similarity should come as no surprise because the problem
at hand is exactly the same as in classic compilation: translating a high-level
language into an IR (referred to as qIR in this context) that will subsequently
be utilized in the synthesis phase. To gain a better understanding of how this
problem persists within the quantum workflow, we can engage in an abstraction
exercise using the circuit presented in Fig. 2a. For instance, this circuit can be
implemented using the structure outlined in the pseudocode found in Fig. 2b.
The process of generating an object used for translation into qIR will entail the
same steps as those outlined in Sect. 2. It will be presented below with a sim-
plified version of each step, sufficiently profound to illuminate the fundamental
concepts.

1. Lexical Analyzer. It detects q0, q1, c0, c1, H, CNOT and Measure as identifiers, = as
comparison operator and |0> as, for instance, a native token (such as integers
or floats). So the lexical result for the line 1 and 5 of Fig. 2b could be:

q0 = |0〉 ←→ {id,0} {=} {|0〉}

c0 = Measure(q0) ←→ {id,3} {=} {id,6} {(} {id,0} {)}

2. Syntax Analyzer. The previous lexical analysis is now fed into this phase in
order to generate a parse tree, which will be generated following the grammar
defined for the language. For the purpose of this work, a dummy grammar
will be defined in order to define the parse tree of lines 1 and 6.

E −→ id = ket | id = E | id(id)
This grammar in conjunction with the lexical analysis defined above, produce
the desired parse trees for lines 1 and 6, portrayed in Fig. 3a and Fig. 3b,
respectively.

3. Semantic Analyzer: In this phase, the parse tree generated in the previous
step is used to verify the semantic consistency of the source code with the
language’s definition. For instance, a possible check involves determining if
the value |0〉 is valid for the q0 identifier and which type should be considered

Quantum Compilation Process: A Survey 105

Fig. 3. Example of parse trees.

for it. In this scheme, it is treated as a native value, similar to integers or
floats. However, during this stage, it can be represented as a two-integer array,
such as [0, 0], or any other suitable format, which can then be translated into
an appropriate signal at the physical layer.

This simplistic example suffices to achieve an important task: showing how
similar it is the analysis phase in quantum computing in comparison with classic
computing. In fact, if someone abstracts from the common concepts of gates,
qubits and measurements, and reads the pseudocode with its grammar and parse
trees it is impossible for them to tell whether the language purpose is modeling
quantum computing or, for example, embedded computing.

This is precisely why, when conducting a current survey of the state-of-the-art
in quantum programming languages [1, 18, 42], numerous libraries emerge, being
among them a set of the most used technologies of the quantum computing
domain, as it is the case for Qiskit [13], Circ [16], ProjectQ [45], Pennylane [9],
among others. Table 1 lists the different software tools for the development of
quantum applications. In this survey, these tools have been categorised into four
distinct categories:

– Frameworks and libraries: offering pre-written code to enhance efficiency.
While libraries provide specific functionalities allowing developers to maintain
control over the application’s flow, frameworks dictate the project’s structure
through “inversion of control”, where the framework calls the developer’s code.
Despite some software being labeled differently, most tools like Qiskit, Cirq,
ProjectQ, and PennyLane, as well as others such as Qulacs, are generally
categorized under frameworks and libraries without a strict adherence to the
’inversion of control’ principle.

– Language extensions: enhance existing languages by adding features, tools,
or syntax. These extensions are not standalone languages but augment the
base language’s capabilities. Notably, QCOR extends C++ and is highlighted
for its relevance, while Quipper, although no longer in use, is significant in
quantum software literature.

– Standalone languages: self-sufficient languages with their own syntax,
semantics, and standard libraries, allowing for the development of various
applications independently of other languages. It specifically highlights quan-
tum programming languages.

106 F. J. Cardama et al.

Table 1. Programming software for quantum computing.

Frameworks libraries Language extensions Standalone language Quantum
process
algebras

Name Basis Name Basis Imperative Functional
Blueqat

Python

QCOR [36] C++ isQ [22] cQPL [34] CQP [36]
Cirq [16] Proto-Quipper [41] Haskell LanQ [37] Q [10] eQPAlg [23]
Penny Lane [9] Quipper [21] Q# QFC [7] QPAlg [27]
ProjectQ [45] LIQUi|〉 [51] F# QCL [53] QML [5]
Perceval [24] Chisel-Q [31] Scala Q|SI〉 [30] QPL
Qiskit [13] qGCL [52] GCL Quingo [2] QuaFL [29]
Quantify qPCF [32] PCF QWIRE [39] Qunity [50]

Strawberry Fields Lambda-q [35]
Lambda
Calculus

Scaffold [3]

Tequila λq [48] Silq [11]
Quantum++ [19]

C++QuEST [26]
Qulacs [46]
QuantumOptics.jl [28]

Julia
Yao.jl [33]
Cove [40] C#

– Quantum process algebras: are theoretical constructs aimed at modeling
and analyzing quantum computing systems, especially in quantum communi-
cation. They build on traditional process algebras by incorporating quantum
mechanics concepts like states, operations, entanglement, and superposition.
These algebras serve as formal languages for accurately describing and rea-
soning about quantum processes, aiding in the development and verification
of quantum algorithms and protocols. Although these frameworks are not
currently in use, they are recognized for their significant contributions to the
initial phases of quantum software development.

Understanding the difference between libraries and programming language
extensions in quantum computing can be challenging. For instance, Qiskit oper-
ates as a library within Python, offering tools like the QuantumCircuit for
building quantum circuits without altering Python’s syntax. In contrast, QCOR
extends C++ by introducing quantum-specific constructs, such as the __qpu__
keyword for quantum kernels, directly integrating quantum capabilities into the
language’s syntax. This example is shown clearly in Fig. 4.

Synthesis Phase. In classic compilation, each line of code translates to
machine-level instructions. However, in quantum languages, most components
are classical except for the quantum circuit part, which is generated by the clas-
sical elements of the program. Quantum computing languages typically exist as
libraries or extensions of classical languages to optimize quantum circuits for

Quantum Compilation Process: A Survey 107

Fig. 4. Example of the difference between a library and a language extension.

minimal gate count and depth. The synthesis phase in quantum compilation is
crucial for generating these optimal circuits, whether for actual quantum com-
puters or simulators. This review focuses on the quantum aspects of this phase,
highlighting the unique challenges of quantum compilation.

The synthesis phase of quantum compilation can be broadly divided into
two main components: circuit optimization and qubit mapping. Of course,
these two parts are not the only ones which can be included in the synthesis
phase. Different techniques and processes such as error correction, error mitiga-
tion, analysis of metrics extracted from the quantum circuit and so on and so
forth, can be included in this phase. But there is not an agreement among the
different compilers and software tools whether other techniques are necessary in
this phase.

Circuit optimization operates on the principle of modifying a quantum circuit to
minimize a specific metric, essential due to the complexity of quantum comput-
ers. The choice of metric varies: for NISQ devices, reducing the count of two-qubit
gates might be crucial, while for others, minimizing circuit depth due to qubit
decoherence may be preferred. The main challenge in circuit optimization is
ensuring the modified circuit retains its original functionality. This necessitates
verification to confirm the circuit still performs the same computational task.
Thus, the optimization phase can be divided into two subphases: improvement
and verification.

The aim of circuit improvement is to enhance the performance and effi-
ciency of quantum circuits through techniques such as removing redundant
inverse gates, optimizing subcircuits, and employing various algorithms for bet-
ter circuit synthesis. Figure 5 illustrates an example of circuit improvement using
gate fusion and deletion. As can be seen, gates U2 and U3 are susceptible to
be fused, while the rotations in the Z axis do not modify the measurement in
the computational basis, therefore they can be eliminated. Conversely, circuit
verification ensures the correctness of these optimized quantum circuits, verify-
ing that the transformations applied during optimization preserve the intended
functionality, with techniques like [6] and ZX-Calculus [12] maintaining cir-
cuit integrity. In quantum compilation, while many compilers like Qiskit, Pro-
jectQ, and ScafCC focus primarily on optimization, the integration of verifica-

108 F. J. Cardama et al.

Fig. 5. Example of the optimization of a circuit applying gate fusion techniques.

tion underscores the importance of ensuring circuit correctness throughout the
compilation process.

Qubit mapping: allocation and routing is analogous to register allocation in clas-
sical computing, aims to efficiently assign logical qubits to physical qubits in a
quantum device, considering constraints like device connectivity [44], while mini-
mizing resources and execution time. This process is complicated by the varying
error rates and connectivity of qubits, making it an NP-hard problem where
exact algorithms are feasible only for small numbers of qubits. Consequently,
heuristic and approximation techniques are often employed to find near-optimal
solutions. This task involves two main processes:

– Quantum allocation: refers to the process of physically assigning specific
logical qubits in a quantum processor. For a correct qubit allocation, in most
cases, it is necessary to add additional SWAP gates to move the qubit infor-
mation [38].

– Quantum routing: refers to the task of finding efficient paths for com-
munication between qubits in a quantum processor. This is important when
mapping gates of two logic qubits that are not interconnected to maximise
efficiency [8].

4 Conclusions
This survey has examined the state-of-the-art in quantum compilation, focusing
on the processes and challenges unique to quantum systems. Quantum compila-
tion retains many parallels with classical methodologies, including the analysis
and synthesis phases, but it introduces significant complexities. The necessity
for qubit mapping and circuit optimization, coupled with verification techniques,
underscores the distinct nature of quantum compilation. Furthermore, the poten-
tial of hybrid algorithms, such as the variational algorithms, demonstrates the
benefits of integrating quantum and classical computing. As quantum technology
progresses, efficient and scalable compilation methods will be crucial for max-
imizing the performance and applicability of quantum processors. Future work
should continue to explore and refine these methods, ensuring robust and effec-
tive compilation processes that can meet the demands of advancing quantum
hardware. In the same way, it is also necessary to focus on innovative method-
ologies, such as distributed quantum compilers.

Quantum Compilation Process: A Survey 109

Acknowledgments. This work was supported by MICINN through the European
Union NextGenerationEU recovery plan (PRTR-C17.I1), and by the Galician Regional
Government through the “Planes Complementarios de I+D+I con las Comunidades
Autónomas” in Quantum Communication. This work was also supported by the
Ministry of Economy and Competitiveness, Government of Spain (Grant Numbers
PID2019-104834GB-I00, PID2022141623NB-I00 and PID2022-137061OB- C22), Con-
sellería de Cultura, Educación e Ordenación Universitaria (accreditations ED431C
2022/16 and ED431G-2019/04), and the European Regional Development Fund
(ERDF), which acknowledges the CiTIUS-Research Center in Intelligent Technolo-
gies of the University of Santiago de Compostela as a Research Center of the Galician
University System.

Disclosure of Interests. The authors declare no conflict of interest.

References

1. Quantum programming languages (2020). https://doi.org/10.1038/s42254-020-
00245-7

2. Fu, X., et al.: Quingo: a programming framework for heterogeneous quantum-
classical computing with nisq features. ACM Trans. Quant. Comput. 2, 1–37
(2021). https://doi.org/10.1145/3483528

3. Abhari, A.J., et al.: Scaffold: Quantum programming language (2012)
4. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,

and Tools, 2nd edn. Addison-Wesley Longman Publishing Co., Inc., Boston (2006)
5. Altenkirch, T., Grattage, J.: A functional quantum programming language (2005)
6. Amy, M.: Towards large-scale functional verification of universal quantum circuits.

Electron. Proc. Theor. Comput. Sci. EPTCS 287, 1–21 (2018). https://doi.org/
10.4204/EPTCS.287.1. http://arxiv.org/abs/1805.06908

7. Bal, H.E., Steiner, J.G., Tanenbaum, A.S.: Programming languages for distributed
computing systems. ACM Comput. Surv. (CSUR) 21, 261–322 (1989). https://
doi.org/10.1145/72551.72552

8. Bandic, M., Almudever, C.G., Feld, S.: Interaction graph-based characteriza-
tion of quantum benchmarks for improving quantum circuit mapping techniques.
Quant. Mach. Intell. 5, 1–30 (2023). https://doi.org/10.1007/S42484-023-00124-
1/TABLES/4. https://link.springer.com/article/10.1007/s42484-023-00124-1

9. Bergholm, V., , et al.: Pennylane: Automatic differentiation of hybrid quantum-
classical computations (2018). http://arxiv.org/abs/1811.04968

10. Bettelli, S., et al.: Toward an architecture for quantum programming. Eur. Phys.
J. D - Atomic Molec. Opt. Plasma Phys. 25(2), 181–200 (2003). https://doi.org/
10.1140/EPJD/E2003-00242-2

11. Bichsel, B., et al.: Silq: a high-level quantum language with safe uncomputation
and intuitive semantics. In: Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pp. 286–300 (2020).
https://doi.org/10.1145/3385412.3386007

12. Coecke, B., Duncan, R.: Interacting quantum observables. In: Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). LNCS, vol. 5126, pp. 298–310 (2008). https://
doi.org/10.1007/978-3-540-70583-3_25/COVER

https://doi.org/10.1038/s42254-020-00245-7
https://doi.org/10.1038/s42254-020-00245-7
https://doi.org/10.1038/s42254-020-00245-7
https://doi.org/10.1038/s42254-020-00245-7
https://doi.org/10.1038/s42254-020-00245-7
https://doi.org/10.1038/s42254-020-00245-7
https://doi.org/10.1038/s42254-020-00245-7
https://doi.org/10.1038/s42254-020-00245-7
https://doi.org/10.1038/s42254-020-00245-7
https://doi.org/10.1145/3483528
https://doi.org/10.1145/3483528
https://doi.org/10.1145/3483528
https://doi.org/10.1145/3483528
https://doi.org/10.1145/3483528
https://doi.org/10.1145/3483528
https://doi.org/10.4204/EPTCS.287.1
https://doi.org/10.4204/EPTCS.287.1
https://doi.org/10.4204/EPTCS.287.1
https://doi.org/10.4204/EPTCS.287.1
https://doi.org/10.4204/EPTCS.287.1
https://doi.org/10.4204/EPTCS.287.1
https://doi.org/10.4204/EPTCS.287.1
https://doi.org/10.4204/EPTCS.287.1
http://arxiv.org/abs/1805.06908
http://arxiv.org/abs/1805.06908
http://arxiv.org/abs/1805.06908
http://arxiv.org/abs/1805.06908
http://arxiv.org/abs/1805.06908
http://arxiv.org/abs/1805.06908
https://doi.org/10.1145/72551.72552
https://doi.org/10.1145/72551.72552
https://doi.org/10.1145/72551.72552
https://doi.org/10.1145/72551.72552
https://doi.org/10.1145/72551.72552
https://doi.org/10.1145/72551.72552
https://doi.org/10.1145/72551.72552
https://doi.org/10.1007/S42484-023-00124-1/TABLES/4
https://doi.org/10.1007/S42484-023-00124-1/TABLES/4
https://doi.org/10.1007/S42484-023-00124-1/TABLES/4
https://doi.org/10.1007/S42484-023-00124-1/TABLES/4
https://doi.org/10.1007/S42484-023-00124-1/TABLES/4
https://doi.org/10.1007/S42484-023-00124-1/TABLES/4
https://doi.org/10.1007/S42484-023-00124-1/TABLES/4
https://doi.org/10.1007/S42484-023-00124-1/TABLES/4
https://doi.org/10.1007/S42484-023-00124-1/TABLES/4
https://doi.org/10.1007/S42484-023-00124-1/TABLES/4
https://doi.org/10.1007/S42484-023-00124-1/TABLES/4
https://link.springer.com/article/10.1007/s42484-023-00124-1
https://link.springer.com/article/10.1007/s42484-023-00124-1
https://link.springer.com/article/10.1007/s42484-023-00124-1
https://link.springer.com/article/10.1007/s42484-023-00124-1
https://link.springer.com/article/10.1007/s42484-023-00124-1
https://link.springer.com/article/10.1007/s42484-023-00124-1
https://link.springer.com/article/10.1007/s42484-023-00124-1
https://link.springer.com/article/10.1007/s42484-023-00124-1
https://link.springer.com/article/10.1007/s42484-023-00124-1
https://link.springer.com/article/10.1007/s42484-023-00124-1
https://link.springer.com/article/10.1007/s42484-023-00124-1
http://arxiv.org/abs/1811.04968
http://arxiv.org/abs/1811.04968
http://arxiv.org/abs/1811.04968
http://arxiv.org/abs/1811.04968
http://arxiv.org/abs/1811.04968
http://arxiv.org/abs/1811.04968
https://doi.org/10.1140/EPJD/E2003-00242-2
https://doi.org/10.1140/EPJD/E2003-00242-2
https://doi.org/10.1140/EPJD/E2003-00242-2
https://doi.org/10.1140/EPJD/E2003-00242-2
https://doi.org/10.1140/EPJD/E2003-00242-2
https://doi.org/10.1140/EPJD/E2003-00242-2
https://doi.org/10.1140/EPJD/E2003-00242-2
https://doi.org/10.1140/EPJD/E2003-00242-2
https://doi.org/10.1140/EPJD/E2003-00242-2
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1007/978-3-540-70583-3_25/COVER
https://doi.org/10.1007/978-3-540-70583-3_25/COVER
https://doi.org/10.1007/978-3-540-70583-3_25/COVER
https://doi.org/10.1007/978-3-540-70583-3_25/COVER
https://doi.org/10.1007/978-3-540-70583-3_25/COVER
https://doi.org/10.1007/978-3-540-70583-3_25/COVER
https://doi.org/10.1007/978-3-540-70583-3_25/COVER
https://doi.org/10.1007/978-3-540-70583-3_25/COVER
https://doi.org/10.1007/978-3-540-70583-3_25/COVER
https://doi.org/10.1007/978-3-540-70583-3_25/COVER
https://doi.org/10.1007/978-3-540-70583-3_25/COVER

110 F. J. Cardama et al.

13. Contributors, Q.: Qiskit: an open-source framework for quantum computing (2023).
https://doi.org/10.5281/zenodo.2573505

14. Copeland, B.J.: What is computation? Synthese 108, 335–359 (1996)
15. Denning, P.J.: The great principles of computing. Am. Sci. 98(5), 369–372 (2010)
16. Developers, C.: Cirq (2023). https://doi.org/10.5281/zenodo.8161252
17. Endo, S., et al.: Hybrid quantum-classical algorithms and quantum error mitiga-

tion. J. Phys. Soc. Jpn. 90(3), 032001 (2021)
18. Garhwal, S., Ghorani, M., Ahmad, A.: Quantum programming language: a sys-

tematic review of research topic and top cited languages. Arch. Comput. Methods
Eng. 28(2), 289–310 (2019). https://doi.org/10.1007/s11831-019-09372-6

19. Gheorghiu, V.: Quantum++: a modern c++ quantum computing library. PLoS
ONE 13 (2018). https://doi.org/10.1371/journal.pone.0208073

20. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Phys.
Rev. Lett. 100, 160501 (2008)

21. Green, A.S., et al.: Quipper: a scalable quantum programming language (2013).
https://doi.org/10.1145/2499370.2462177

22. Guo, J., et al.: isq: An integrated software stack for quantum programming. IEEE
Trans. Quant. Eng. 4 (2023). https://doi.org/10.1109/TQE.2023.3275868

23. Haider, S., Kazmi, D.S.A.R.: An extended quantum process algebra (eqpalg) app-
roach for distributed quantum systems (2020). http://arxiv.org/abs/2001.04249

24. Heurtel, N., et al.: Perceval: a software platform for discrete variable photonic
quantum computing. Quantum 7, 931 (2023). https://doi.org/10.22331/q-2023-
02-21-931

25. Jaques, S., Rattew, A.G.: Qram: a survey and critique. arXiv preprint
arXiv:2305.10310 (2023)

26. Jones, T., et al.: Quest and high performance simulation of quantum computers.
Sci. Rep. 9 (2019). https://doi.org/10.1038/s41598-019-47174-9

27. Jorrand, P., Lalire, M.: Toward a quantum process algebra. In: 2004 Computing
Frontiers Conference, pp. 111–119 (2004). https://doi.org/10.1145/977091.977108

28. Krämer, S., Plankensteiner, D., Ostermann, L., Ritsch, H.: Quantumoptics.jl: a
julia framework for simulating open quantum systems. Comput. Phys. Commun.
227, 109–116 (2018). https://doi.org/10.1016/J.CPC.2018.02.004

29. Lapets, A., da Silva, M.P., Thome, M., Adler, A., Beal, J., Roetteler, M.: Quafl:
a typed dsl for quantum programming, pp. 19–26. Association for Computing
Machinery (2013). https://doi.org/10.1145/2505351.2505357

30. Liu, S., et al.: Q|SI〉 : a quantum programming environment. In: Jones, C., Wang,
J., Zhan, N. (eds.) Symposium on Real-Time and Hybrid Systems. LNCS, vol.
11180, pp. 133–164. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
01461-2_8

31. Liu, X., Kubiatowicz, J.: Chisel-q: designing quantum circuits with a scala embed-
ded language. In: 2013 IEEE 31st International Conference on Computer Design,
ICCD 2013, pp. 427–434 (2013). https://doi.org/10.1109/ICCD.2013.6657075

32. Paolini, L., Zorzi, M.: qPCF: a language for quantum circuit computations. In:
Gopal, T.V., Jäger, G., Steila, S. (eds.) TAMC 2017. LNCS, vol. 10185, pp. 455–
469. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55911-7_33

33. Luo, X.Z., et al.: Yao.jl: extensible, efficient framework for quantum algorithm
design (2020). https://doi.org/10.22331/q-2020-10-11-341

34. Mauerer, W.: Semantics and simulation of communication in quantum program-
ming (2005)

35. Maymin, P.: Extending the lambda calculus to express randomized and quantu-
mized algorithms (1996). https://arxiv.org/abs/quant-ph/9612052v2

https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.8161252
https://doi.org/10.5281/zenodo.8161252
https://doi.org/10.5281/zenodo.8161252
https://doi.org/10.5281/zenodo.8161252
https://doi.org/10.5281/zenodo.8161252
https://doi.org/10.5281/zenodo.8161252
https://doi.org/10.5281/zenodo.8161252
https://doi.org/10.1007/s11831-019-09372-6
https://doi.org/10.1007/s11831-019-09372-6
https://doi.org/10.1007/s11831-019-09372-6
https://doi.org/10.1007/s11831-019-09372-6
https://doi.org/10.1007/s11831-019-09372-6
https://doi.org/10.1007/s11831-019-09372-6
https://doi.org/10.1007/s11831-019-09372-6
https://doi.org/10.1007/s11831-019-09372-6
https://doi.org/10.1007/s11831-019-09372-6
https://doi.org/10.1371/journal.pone.0208073
https://doi.org/10.1371/journal.pone.0208073
https://doi.org/10.1371/journal.pone.0208073
https://doi.org/10.1371/journal.pone.0208073
https://doi.org/10.1371/journal.pone.0208073
https://doi.org/10.1371/journal.pone.0208073
https://doi.org/10.1371/journal.pone.0208073
https://doi.org/10.1371/journal.pone.0208073
https://doi.org/10.1145/2499370.2462177
https://doi.org/10.1145/2499370.2462177
https://doi.org/10.1145/2499370.2462177
https://doi.org/10.1145/2499370.2462177
https://doi.org/10.1145/2499370.2462177
https://doi.org/10.1145/2499370.2462177
https://doi.org/10.1145/2499370.2462177
https://doi.org/10.1109/TQE.2023.3275868
https://doi.org/10.1109/TQE.2023.3275868
https://doi.org/10.1109/TQE.2023.3275868
https://doi.org/10.1109/TQE.2023.3275868
https://doi.org/10.1109/TQE.2023.3275868
https://doi.org/10.1109/TQE.2023.3275868
https://doi.org/10.1109/TQE.2023.3275868
https://doi.org/10.1109/TQE.2023.3275868
http://arxiv.org/abs/2001.04249
http://arxiv.org/abs/2001.04249
http://arxiv.org/abs/2001.04249
http://arxiv.org/abs/2001.04249
http://arxiv.org/abs/2001.04249
http://arxiv.org/abs/2001.04249
https://doi.org/10.22331/q-2023-02-21-931
https://doi.org/10.22331/q-2023-02-21-931
https://doi.org/10.22331/q-2023-02-21-931
https://doi.org/10.22331/q-2023-02-21-931
https://doi.org/10.22331/q-2023-02-21-931
https://doi.org/10.22331/q-2023-02-21-931
https://doi.org/10.22331/q-2023-02-21-931
https://doi.org/10.22331/q-2023-02-21-931
https://doi.org/10.22331/q-2023-02-21-931
https://doi.org/10.22331/q-2023-02-21-931
http://arxiv.org/abs/2305.10310
https://doi.org/10.1038/s41598-019-47174-9
https://doi.org/10.1038/s41598-019-47174-9
https://doi.org/10.1038/s41598-019-47174-9
https://doi.org/10.1038/s41598-019-47174-9
https://doi.org/10.1038/s41598-019-47174-9
https://doi.org/10.1038/s41598-019-47174-9
https://doi.org/10.1038/s41598-019-47174-9
https://doi.org/10.1038/s41598-019-47174-9
https://doi.org/10.1038/s41598-019-47174-9
https://doi.org/10.1145/977091.977108
https://doi.org/10.1145/977091.977108
https://doi.org/10.1145/977091.977108
https://doi.org/10.1145/977091.977108
https://doi.org/10.1145/977091.977108
https://doi.org/10.1145/977091.977108
https://doi.org/10.1145/977091.977108
https://doi.org/10.1016/J.CPC.2018.02.004
https://doi.org/10.1016/J.CPC.2018.02.004
https://doi.org/10.1016/J.CPC.2018.02.004
https://doi.org/10.1016/J.CPC.2018.02.004
https://doi.org/10.1016/J.CPC.2018.02.004
https://doi.org/10.1016/J.CPC.2018.02.004
https://doi.org/10.1016/J.CPC.2018.02.004
https://doi.org/10.1016/J.CPC.2018.02.004
https://doi.org/10.1016/J.CPC.2018.02.004
https://doi.org/10.1016/J.CPC.2018.02.004
https://doi.org/10.1145/2505351.2505357
https://doi.org/10.1145/2505351.2505357
https://doi.org/10.1145/2505351.2505357
https://doi.org/10.1145/2505351.2505357
https://doi.org/10.1145/2505351.2505357
https://doi.org/10.1145/2505351.2505357
https://doi.org/10.1145/2505351.2505357
https://doi.org/10.1007/978-3-030-01461-2_8
https://doi.org/10.1007/978-3-030-01461-2_8
https://doi.org/10.1007/978-3-030-01461-2_8
https://doi.org/10.1007/978-3-030-01461-2_8
https://doi.org/10.1007/978-3-030-01461-2_8
https://doi.org/10.1007/978-3-030-01461-2_8
https://doi.org/10.1007/978-3-030-01461-2_8
https://doi.org/10.1007/978-3-030-01461-2_8
https://doi.org/10.1007/978-3-030-01461-2_8
https://doi.org/10.1007/978-3-030-01461-2_8
https://doi.org/10.1109/ICCD.2013.6657075
https://doi.org/10.1109/ICCD.2013.6657075
https://doi.org/10.1109/ICCD.2013.6657075
https://doi.org/10.1109/ICCD.2013.6657075
https://doi.org/10.1109/ICCD.2013.6657075
https://doi.org/10.1109/ICCD.2013.6657075
https://doi.org/10.1109/ICCD.2013.6657075
https://doi.org/10.1109/ICCD.2013.6657075
https://doi.org/10.1007/978-3-319-55911-7_33
https://doi.org/10.1007/978-3-319-55911-7_33
https://doi.org/10.1007/978-3-319-55911-7_33
https://doi.org/10.1007/978-3-319-55911-7_33
https://doi.org/10.1007/978-3-319-55911-7_33
https://doi.org/10.1007/978-3-319-55911-7_33
https://doi.org/10.1007/978-3-319-55911-7_33
https://doi.org/10.1007/978-3-319-55911-7_33
https://doi.org/10.1007/978-3-319-55911-7_33
https://doi.org/10.1007/978-3-319-55911-7_33
https://doi.org/10.22331/q-2020-10-11-341
https://doi.org/10.22331/q-2020-10-11-341
https://doi.org/10.22331/q-2020-10-11-341
https://doi.org/10.22331/q-2020-10-11-341
https://doi.org/10.22331/q-2020-10-11-341
https://doi.org/10.22331/q-2020-10-11-341
https://doi.org/10.22331/q-2020-10-11-341
https://doi.org/10.22331/q-2020-10-11-341
https://doi.org/10.22331/q-2020-10-11-341
https://doi.org/10.22331/q-2020-10-11-341
https://arxiv.org/abs/quant-ph/9612052v2
https://arxiv.org/abs/quant-ph/9612052v2
https://arxiv.org/abs/quant-ph/9612052v2
https://arxiv.org/abs/quant-ph/9612052v2
https://arxiv.org/abs/quant-ph/9612052v2
https://arxiv.org/abs/quant-ph/9612052v2
https://arxiv.org/abs/quant-ph/9612052v2

Quantum Compilation Process: A Survey 111

36. Mintz, T.M., et al.: Qcor: a language extension specification for the heterogeneous
quantum-classical model of computation. J. Emerg. Technol. Comput. Syst. 16(2)
(2020). https://doi.org/10.1145/3380964

37. Mlnarik, H.: Operational semantics and type soundness of quantum programming
language lanq (2007). https://arxiv.org/abs/0708.0890v1

38. Paler, A.: On the influence of initial qubit placement during NISQ circuit compi-
lation. In: Feld, S., Linnhoff-Popien, C. (eds.) QTOP 2019. LNCS, vol. 11413, pp.
207–217. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14082-3_18

39. Paykin, J., Rand, R., Zdancewic, S.: Qwire: a core language for quantum cir-
cuits. ACM SIGPLAN Not. 52, 846–858 (2017). https://doi.org/10.1145/3009837.
3009894

40. Purkeypile, M.D.: Cove: A practical quantum computer programming framework.
arXiv org (2009)

41. Rios, F., Selinger, P.: A categorical model for a quantum circuit description lan-
guage. Electron. Proc. Theor. Comput. Sci. 266 (2017). https://doi.org/10.4204/
EPTCS.266.11

42. Serrano, M.A., Cruz-Lemus, J.A., Perez-Castillo, R., Piattini, M.: Quantum soft-
ware components and platforms: overview and quality assessment. ACM Comput.
Surv. 55, 1–31 (2023). https://doi.org/10.1145/3548679

43. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

44. Siraichi, M.Y., et al.: Qubit allocation. In: Proceedings of the 2018 International
Symposium on Code Generation and Optimization, CGO 2018, pp. 113–125.
Association for Computing Machinery, New York (2018). https://doi.org/10.1145/
3168822

45. Steiger, D.S., et al.: Projectq: an open source software framework for quantum
computing. Quantum 2 (2018). https://doi.org/10.22331/q-2018-01-31-49

46. Suzuki, Y., et al.: Qulacs: a fast and versatile quantum circuit simulator for research
purpose. Quantum 5 (2021). https://doi.org/10.22331/Q-2021-10-06-559

47. Tilly, J., et al.: The variational quantum eigensolver: a review of methods and best
practices. Phys. Rep. 986, 1–128 (2022). https://doi.org/10.1016/j.physrep.2022.
08.003

48. van Tonder, A.: A lambda calculus for quantum computation. SIAM J. Comput.
33, 1109–1135 (2003). https://doi.org/10.1137/S0097539703432165

49. Turing, A.M., et al.: On computable numbers, with an application to the entschei-
dungsproblem. J. Math 58(345–363), 5 (1936)

50. Voichick, F., et al.: Qunity: a unified language for quantum and classical computing.
Proc. ACM Program. Lang. 7, 921–951 (2023). https://doi.org/10.1145/3571225

51. Wecker, D., Svore, K.M.: Liqui|spsdoigtsps: a software design architecture and
domain-specific language for quantum computing (2014)

52. Zuliani, P.: Non-deterministic quantum programming, pp. 179–195 (2004)
53. Ömer, B.: Classical concepts in quantum programming. Int. J. Theor. Phys. 44,

943–955 (2005). https://doi.org/10.1007/S10773-005-7071-X/METRICS

https://doi.org/10.1145/3380964
https://doi.org/10.1145/3380964
https://doi.org/10.1145/3380964
https://doi.org/10.1145/3380964
https://doi.org/10.1145/3380964
https://doi.org/10.1145/3380964
https://arxiv.org/abs/0708.0890v1
https://arxiv.org/abs/0708.0890v1
https://arxiv.org/abs/0708.0890v1
https://arxiv.org/abs/0708.0890v1
https://arxiv.org/abs/0708.0890v1
https://arxiv.org/abs/0708.0890v1
https://doi.org/10.1007/978-3-030-14082-3_18
https://doi.org/10.1007/978-3-030-14082-3_18
https://doi.org/10.1007/978-3-030-14082-3_18
https://doi.org/10.1007/978-3-030-14082-3_18
https://doi.org/10.1007/978-3-030-14082-3_18
https://doi.org/10.1007/978-3-030-14082-3_18
https://doi.org/10.1007/978-3-030-14082-3_18
https://doi.org/10.1007/978-3-030-14082-3_18
https://doi.org/10.1007/978-3-030-14082-3_18
https://doi.org/10.1007/978-3-030-14082-3_18
https://doi.org/10.1145/3009837.3009894
https://doi.org/10.1145/3009837.3009894
https://doi.org/10.1145/3009837.3009894
https://doi.org/10.1145/3009837.3009894
https://doi.org/10.1145/3009837.3009894
https://doi.org/10.1145/3009837.3009894
https://doi.org/10.1145/3009837.3009894
https://doi.org/10.4204/EPTCS.266.11
https://doi.org/10.4204/EPTCS.266.11
https://doi.org/10.4204/EPTCS.266.11
https://doi.org/10.4204/EPTCS.266.11
https://doi.org/10.4204/EPTCS.266.11
https://doi.org/10.4204/EPTCS.266.11
https://doi.org/10.4204/EPTCS.266.11
https://doi.org/10.4204/EPTCS.266.11
https://doi.org/10.1145/3548679
https://doi.org/10.1145/3548679
https://doi.org/10.1145/3548679
https://doi.org/10.1145/3548679
https://doi.org/10.1145/3548679
https://doi.org/10.1145/3548679
https://doi.org/10.1145/3168822
https://doi.org/10.1145/3168822
https://doi.org/10.1145/3168822
https://doi.org/10.1145/3168822
https://doi.org/10.1145/3168822
https://doi.org/10.1145/3168822
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.22331/Q-2021-10-06-559
https://doi.org/10.22331/Q-2021-10-06-559
https://doi.org/10.22331/Q-2021-10-06-559
https://doi.org/10.22331/Q-2021-10-06-559
https://doi.org/10.22331/Q-2021-10-06-559
https://doi.org/10.22331/Q-2021-10-06-559
https://doi.org/10.22331/Q-2021-10-06-559
https://doi.org/10.22331/Q-2021-10-06-559
https://doi.org/10.22331/Q-2021-10-06-559
https://doi.org/10.22331/Q-2021-10-06-559
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1137/S0097539703432165
https://doi.org/10.1137/S0097539703432165
https://doi.org/10.1137/S0097539703432165
https://doi.org/10.1137/S0097539703432165
https://doi.org/10.1137/S0097539703432165
https://doi.org/10.1137/S0097539703432165
https://doi.org/10.1145/3571225
https://doi.org/10.1145/3571225
https://doi.org/10.1145/3571225
https://doi.org/10.1145/3571225
https://doi.org/10.1145/3571225
https://doi.org/10.1145/3571225
https://doi.org/10.1007/S10773-005-7071-X/METRICS
https://doi.org/10.1007/S10773-005-7071-X/METRICS
https://doi.org/10.1007/S10773-005-7071-X/METRICS
https://doi.org/10.1007/S10773-005-7071-X/METRICS
https://doi.org/10.1007/S10773-005-7071-X/METRICS
https://doi.org/10.1007/S10773-005-7071-X/METRICS
https://doi.org/10.1007/S10773-005-7071-X/METRICS
https://doi.org/10.1007/S10773-005-7071-X/METRICS
https://doi.org/10.1007/S10773-005-7071-X/METRICS
https://doi.org/10.1007/S10773-005-7071-X/METRICS

112 F. J. Cardama et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Quantum Compilation Process: A Survey
	1 Introduction
	2 Classic Compilation
	3 Quantum Compilation
	3.1 Compilation Phases for Quantum Computing

	4 Conclusions
	References

