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Using Differential Evolution 
to avoid local minima in Variational 
Quantum Algorithms
Daniel Faílde 1*, José Daniel Viqueira 1,2, Mariamo Mussa Juane 1 & Andrés Gómez 1

Variational Quantum Algorithms (VQAs) are among the most promising NISQ-era algorithms for 
harnessing quantum computing in diverse fields. However, the underlying optimization processes 
within these algorithms usually deal with local minima and barren plateau problems, preventing 
them from scaling efficiently. Our goal in this paper is to study alternative optimization methods 
that can avoid or reduce the effect of these problems. To this end, we propose to apply the 
Differential Evolution (DE) algorithm to VQAs optimizations. Our hypothesis is that DE is resilient 
to vanishing gradients and local minima for two main reasons: (1) it does not depend on gradients, 
and (2) its mutation and recombination schemes allow DE to continue evolving even in these cases. 
To demonstrate the performance of our approach, first, we use a robust local minima problem to 
compare state-of-the-art local optimizers (SLSQP, COBYLA, L-BFGS-B and SPSA) against DE using 
the Variational Quantum Eigensolver algorithm. Our results show that DE always outperforms local 
optimizers. In particular, in exact simulations of a 1D Ising chain with 14 qubits, DE achieves the 
ground state with a 100% success rate, while local optimizers only exhibit around 40%. We also 
show that combining DE with local optimizers increases the accuracy of the energy estimation once 
avoiding local minima. Finally, we demonstrate how our results can be extended to more complex 
problems by studying DE performance in a 1D Hubbard model.

Variational Quantum Algorithms (VQAs) are a promising group of hybrid classical-quantum algorithms that 
can reach quantum advantage for solving many relevant problems in NISQ-era quantum computers1. VQAs are 
composed of classical and quantum routines, which are used to minimize a given cost function. They use (1) 
quantum computing to evaluate a function with a parameterized quantum circuit, and (2) classical computing 
to optimize the circuit parameters on each iteration. Their parameterized structure gives VQAs the flexibility to 
work with shallow quantum circuits, unlike other quantum algorithms such as the Quantum Phase Estimation, 
Shor’s and Grover’s algorithms2–4. Therefore, VQAs can circumvent the issues associated with the errors and 
coherence times intrinsic to current quantum hardware to generate reliable outputs even without error correc-
tion techniques. In addition, their general purpose (minimizing a function) allows using them for many different 
optimization problems in machine learning, chemistry, physics, and mathematics, among others5–9. One of the 
most common algorithms in the family of VQAs is the Variational Quantum Eigensolver (VQE), which aims to 
find the quantum state (or the set) that minimizes the energy of a given Hamiltonian6,10. On a small scale, VQE 
can solve, for instance, small molecules and lattice models11,12. But on a broader framework, it is an excellent 
candidate to simulate large chemical reactions, perform exact calculations on crystalline solids, and uncover the 
physics behind complex systems such as the Hubbard model or exotic states of matter13–18.

However, currently, VQE and VQAs have scaling problems19. Typical issues concern ansatz expressibility 
and trainability, which refers to the degree of information that a quantum circuit has to reproduce an energy 
state of the system and the easiness of fitting the parameters to find the global minimum, respectively20,21. Both 
concepts are directly related to problems in the optimization landscape where VQAs can present many local 
minima and barren plateaus19,21–24. These problems worsen with the number of qubits since the Hilbert space 
grows exponentially19,24. Local minima inherently arise from minimizing a complex function. Barren plateaus 
are flat areas in the cost function landscape of VQAs where gradients vanish exponentially with the problem 
size24. These areas can arise from different sources, such as random parameterized quantum circuits, noisy envi-
ronments, and a high degree of entanglement25,26. Vanishing gradients and local minima are severe problems 
towards scaling VQAs. These cause unsuccessful optimizations as well as a significant increase in the number 
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of measurements needed to estimate tiny gradients22,24. Thus, VQE circuit construction requires a smart and 
educated ansatz selection taking, for example, some knowledge from your Hamiltonian to reduce the number 
of parameters to optimize without losing expressibility10,27. Additionally, it is important to deploy a suitable 
optimization method that maximizes the probability of avoiding traps in the optimization landscape and the 
consequences of dealing with tiny gradients.

In this work, we focus on the optimization problem motivated by the lack of optimization methods that can 
successfully avoid these issues in VQAs23. In fact, there is evidence that usual gradient-based and some gradient-
free local optimizers suffer from barren plateaus and local minima syndrome23,26. On the other hand, there are 
recent alternatives that use the Quantum Fisher Information Matrix (QFIM) to lead optimization28,29. In par-
ticular, the Quantum Natural Gradient has successfully found the ground state (GS), i.e. the state with minimum 
energy, of some specific models up to a considerable number of qubits27. Gradient-based optimizers using the 
QFIM are promising methods. However, they still depend on gradients, and in general, they are computation-
ally expensive and imply a significant increase in the number of function evaluations28. Alternatives designed 
to decrease the computational complexity, such as QN-SPSA, could not achieve the same performance29. In this 
article, we analyze an alternative optimization strategy based on Differential Evolution (DE) algorithm. DE is 
an evolutionary algorithm based on population breeding that is gradient-free, easy to implement, and to paral-
lelize. We expect DE to avoid or drastically reduce the effects of vanishing gradients and local minima since its 
parameter update can naturally keep evolving even in these cases.

To test this approach, we compare DE with four state-of-the-art local optimizers (SLSQP, COBYLA, L-BFGS-
B, and SPSA) that have demonstrated good results in the current literature11,12,22,30–32. For this, we choose a 1D 
Ising model without a magnetic field. That is a simple model but a good test for optimization. In fact, as we 
show later, usual local gradient-based and gradient-free optimizers tend to meaningfully fail as one increases 
the number of qubits/lattice sites in the system. The reasons are an enlarged number of excited states and their 
growing degeneracy in the parameter space that defines a robust local minima problem for optimization. Our 
results show how DE can avoid or drastically reduce this problem in the optimization landscape, substantially 
improving the success rate. We test several simple variations within this genetic algorithm that always outper-
form local optimization methods for large systems. Specifically, we identify one recombination strategy of DE 
with an exponential crossover that avoids all local minima in the range studied and is suitable to work together 
with gradient-based methods to speed up optimization and its convergence. Finally, we test DE performance in 
a correlated fermionic system by applying the same methodology to a 1D Hubbard model with eight qubits. We 
show again how DE outperforms local optimizers, indicating its potential usage to scale up the study of strongly 
correlated systems in quantum devices.

Methods
Ising model without magnetic field
The Ising model is one of the most simple and well-studied models in the literature, which serves as a starting 
point towards more complex models for studying magnetism and describing phase transitions33,34. Furthermore, 
classical optimization problems can also be tackled by mapping them to spin Hamiltonians35. An example of 
this is in the Quantum Approximate Optimization Algorithm (QAOA)36,37. In quantum computing, spin models 
can also help to get some intuition for circuit construction. This is because some ansatzes, such as the family of 
Unitary Coupled Cluster (UCC), QAOA, and Hamiltonian Variational Ansatz (HVA), employ a Hamiltonian to 
build the parameterized quantum circuit10,38–40. Thus, working with spin models can also serve to estimate the 
system connectivity and the degree of entanglement required to simulate our system efficiently41. In its more 
general form, the Ising model consists of a Hamiltonian

where the first summation stands for the interaction between adjacent spins σ ∈ {−1,+1} , Jij represents the 
coupling constant between spins in sites i, j and n is the number of sites (qubits) in the lattice (circuit). The sec-
ond summation represents the coupling of individual magnetic moments with an external magnetic field, where 
hi is the magnetic field at site i. In the Ising model, each site has two possible values ±1 so that, in a quantum 
mechanical description, σ can be any of the Pauli matrices.

Focused on the 1D case, we set the magnetic field h = 0 , maximizing the degeneracy of the excited levels, and 
the interaction constant J = Jij = 1,∀i, j . So, our Hamiltonian in matrix form is a sum of Pauli strings

being I the 2 × 2 identity matrix. ⊗ stands for the Kronecker product. We take, without loss of generality, σ = σy 
and open boundary conditions, so we have a chain of spins with no interaction between the first and last elements 
( J1n = 0 ). In this way, it is straightforward to see that there are just two configurations minimizing the energy 
〈H〉 with all spins oriented in the same direction. In the present case, these are |i�⊗n , | − i�⊗n or their superposi-
tion, being | ± i� the eigenstates of σy . The degeneracy of states in the first excited energy level is 2(n− 1) , and 
for n > 2 , the second excited level is (n− 1)(n− 2)-fold degenerate. Eigenvalues go from −(n− 1) to n− 1 in 
steps of two.

Quantum circuit
If we call |ψ(�θ)� the state generated by the ansatz, the optimization problem is defined as finding the values of 
�θ  that minimize

(1)H = −

n
∑

�i,j�

Jijσiσj −

n
∑

i

hiσi

(2)H = −σ ⊗ σ ⊗ I⊗ I⊗ ...⊗ I− I⊗ σ ⊗ σ ⊗ I⊗ ...⊗ I− ...− I⊗ ...⊗ I⊗ I⊗ σ ⊗ σ
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and the optimization is successful if min(Eθ ) = E0 , being E0 the energy of the ground state. To find the eigenvec-
tor that gives the ground state of the system, a hardware-efficient ansatz with an entanglement between adjacent 
qubits is expressive enough11. In our case, it consists of L layers of parameterized RyRz gates per qubit, followed 
by a ladder of controlled Z gates (CZ) plus a final parameterized layer of RyRz gates (Fig. 1). So, the total number 
of parameters Nθ is 2n(L+ 1) . Finally, our quantum circuit also has an initial layer of Ry(π/4) gates to avoid 
starting directly in the state |0�⊗n . However, this layer is not necessary unless we initialize parameters near zero.

It is important to note that this is not the smallest possible ansatz. For instance, a QAOA ansatz is also expres-
sive and uses fewer parameters, as in Ref.27, where only Nθ = n parameters are necessary to solve the Trans-
verse Field Ising Model (TFIM). This gives a more trainable quantum circuit which performs a more efficient 
energy minimization. This also occurs for adaptive ansatzes, which help to mitigate problems in the optimiza-
tion landscape38,42. Therefore, combining a highly trainable and expressive ansatz with an efficient optimization 
method is crucial if we want to scale towards larger systems. However, to see the capability of optimizers to avoid 
local minima and make a representative statistical sample, an expressive ansatz with relatively low trainability is 
more suitable to work with classical computational resources.

Simulation details
All simulations use a locally developed code that can be found at https://​gitlab.​com/​proye​ctos-​cesga/​quant​um/​
react-​eu/​vqe_​ising_​chain_​de. Software version information is also available at this repository. In this work, we 
do not perform any technical modification in the underlying mechanism behind each optimizer. All simula-
tions use the optimizers available from Qiskit and Scipy packages. For local optimizers, the maximum number 
of iterations and/or function evaluations are the unique adjusted parameters (Table 1). All optimizations using 
these methods finished within the specified number of iterations except some using SPSA and COBYLA ( L = 4 ), 
which run out all. For these cases optimizations end near the GS or some excited state, although with less preci-
sion. For DE, we fix the maximum number of iterations, the crossover strategy (bin/exp), and the initialization. 
DE simulations use Scipy together with Multiprocessing to run in multiple processors.

Results
Local optimizers: SLSQP, COBYLA, L‑BFGS‑B and SPSA
First, we study the response of different used local optimizers in VQAs, which are SLSQP, COBYLA, L-BFGS-
B and SPSA. These are some of the most used gradient-based and gradient-free optimizers in the VQAs 
literature11,12,22,30–32. However, they are predicted not to avoid barren plateaus, and in some problems, they start 
to get trapped in local minima as we increase the circuit complexity23,26,27. Due to the considerable amount of 
optimizations, we select the success rate (SR) as our metric to compare the performance of the different methods. 
SR is the percentage of optimizations that finish in the ground state related to the total number of optimizations 
for each case. For this measurement, we set a tolerance δ = 1− |Eθ /E0| ≤ 10−2 to declare the optimization as 
successful. For each optimization, we initialize each parameter θk,l with a random number uniformly distributed 

(3)E(�θ) = �ψ(�θ)|H|ψ(�θ)� ≡ Eθ

×L

|0〉 Ry(π/4) Ry(θ1,l) Rz(θ4,l) Ry(θ1,L+1) Rz(θ4,L+1)

|0〉 Ry(π/4) Ry(θ2,l) Rz(θ5,l) Ry(θ2,L+1) Rz(θ5,L+1)

|0〉 Ry(π/4) Ry(θ3,l) Rz(θ6,l) Ry(θ3,L+1) Rz(θ6,L+1)

Figure 1.   Quantum circuit used to simulate the 1D Ising model with chain length n = 3 . L stands for the 
number of layers, while l = 1, 2, ..., L . Each layer contains a set of parameterized RyRz gates followed by a ladder 
of CZ gates. The circuit ends with a final set of parameterized RyRz gates. The total number of parameters Nθ 
scales with 2n(L+ 1).

Table 1.   Maximum number of iterations ( Nmax
it  ) and maximum number of function evaluations ( Nmax

f  ) for 
each optimizer used to minimize the 1D Ising model. p is an integer that fixes the number of individuals per 
parameter when using DE.

COBYLA SLSQP L-BFGS-B SPSA DE (bin) DE (exp)

Nmax
it 105 103 104 300nL 105 2.5 · 104

Nmax
f Nmax

it NθN
max
it 103 Nθ 2Nmax

it pNθN
max
it pNθN

max
it

https://gitlab.com/proyectos-cesga/quantum/react-eu/vqe_ising_chain_de
https://gitlab.com/proyectos-cesga/quantum/react-eu/vqe_ising_chain_de
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along the interval [−π ,π) as they correspond to rotations in the Bloch sphere. However, we do not constrain the 
parameters in that range during minimization.

Figure 2a shows the results for each local optimizer, where each point represents a total of 180 different 
optimizations Nopt . Noticeably, for L = 1 , we observe that the success rate significantly decays as we increase 
the chain length. In particular, for chains with more than five spins, these local optimizers do not guarantee an 
appropriate energy minimization without exploring modifications to their algorithms. The trend improves as we 
increase the number of layers in the ansatz. This occurs at the expense of increasing the number of parameters 
and, hence, the computational time. Nevertheless, this scaling does not seem to compensate as we still have a 
low success rate, and the downtrend remains unalterable.

As we will see later on, it is important to remark that any time that optimization does not find the GS, it 
finishes in one of the excited states of the system. This allows us to interpret it as a robust local minima problem. 
However, as one increases the system size, introduces noise, or increases the system entanglement, other issues, 
such as barren plateaus, are predicted to appear26, and one can deal with a variational state whose associated 
energy could not identify with an eigenvalue of the Hamiltonian.

Differential Evolution
A possible way to avoid this local minima problem is with a multiparticle strategy that can update the particles 
parameters with the remaining population members. This occurs regardless of whether the particle gets trapped 
in a local minimum or a barren plateau. In this work, we focus on Differential Evolution (DE), an evolutionary 
algorithm based on population breeding that is easy to implement and run in parallel processors43,44. Together 
with DE, there are other evolutionary algorithms, such as the Particle Swarm Optimization, or different varia-
tions of these methods45–47. However, up to now, their use is still limited in the field of quantum computing48–50.

In general terms, DE starts from an initial population with size P instead of a single individual, as in the previ-
ously analyzed optimizers. Once the population has been created, either explicitly or randomly, DE evaluates the 
objective function, in our case the energy, to determine its value for the different population members and selects 
the one with the lowest value (best). Individuals are vectors �x ≡ (θ1, θ2, ..., θNθ

) with Nθ elements. Remember that 
Nθ = 2n(L+ 1) for our ansatz. From here, it starts a process in which it is defined a new candidate (mutant) for 
each of the population members (target). There are several strategies to do so51. Commonly, these strategies will 
employ three (or more) members of the population to generate a new mutant:

which can be all randomly chosen or using �xbest in some of the terms. For our simulations, each mutant is built 
from three vectors as in (4) but using �x0 = �xbest . F is the mutation factor. Once we have a candidate for each popu-
lation member, a recombination phase between the targets and mutants starts. In there, some parameters of the 
target are replaced by the mutant’s ones following a crossbreeding strategy. This strategy can be binomial, where 

(4)�xmutant = �x0 + F(�x1 − �x2)

(a) (b)

Figure 2.   (a) Success rates for 180 optimizations with different random initializations of 3-to-14 qubit circuits 
and a tolerance (threshold) of 10−2 for success. Each of the four curves stands for a different number of layers 
used in the ansatz, as shown in legends, with each subplot for an optimizer. (b) Success rate ( δ ≤ 10−2 ) for 
local optimizers and DE. Quantum circuits have L = 1 and Nθ = 4n parameters. In optimizations with DE, 
p indicates the number of individuals per parameter. So, the total number of individuals in the population is 
p · Nθ . Labels bin and exp stand for binomial and exponential crossover strategies, respectively. Nopt = 1000 in 
all cases except for DE with p=15 with a binomial crossover and DE with p=1 with exponential recombination, 
where Nopt = 100.
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each parameter has a probability C of being changed by the mutant’s one, or exponential, where all parameters 
between two randomly chosen elements of the target are replaced52. The process finishes with the evaluation of 
the energy of the modified target vector. The modified target replaces the original target if the energy is lower or 
is discarded if it is higher. This process is repeated until convergence

where t, and t ′ are the absolute and relative tolerances, and Ē is the average energy of the population.
With this in mind, we perform our simulations using DE. For this task, we use the scipy.optimize package 

where DE is already implemented, allowing direct parallelization in different workers using Multiprocessing. In 
this case, we increase Nopt up to 1000 for the local optimizers, repeating the optimizations for L = 1 to make our 
comparison with DE more reliable. For DE, we choose a random initialization with halton (method provided by 
Scipy), which allows maximizing the parameter space explored at the beginning53. In this way, the population 
size P is exactly the product of p · Nθ , being p an integer that fixes the number of individuals per parameter. We 
execute two sets of simulations: one using p ∈ {1, 15} with a binomial crossover and a second with p = 1 and an 
exponential recombination strategy (Fig. 2b). In these cases, Nopt = 100 except for DE with binomial crossover 
and p = 1 where Nopt = 1000 . It is important to remark that simulations with p = 1 allow a direct comparison 
between DE and the previously analyzed methods. SLSQP and L-BFGS-B (SPSA) compute (approximates) the 
gradients of Nθ components, and COBYLA computes Nθ distances. Therefore, for these optimizers, the total 
number of virtual targets is P = Nθ . Tolerance values for the stopping criteria are t = 0 and t ′ = 10−5.

Binomial crossover
For simulations with a binomial crossover, we observe that even in the same conditions ( p = 1 ), DE clearly 
outperforms local optimizers. This is because, even if one target gets trapped in a local minimum, DE can con-
tinue evolving. Therefore, this individual has a non-zero probability of eluding the local minimum, thanks to 
the remaining members. This is not possible for the previous methods unless we explore modifications to their 
mechanism. Nevertheless, as we increase the number of qubits, the number of possible local minima increases 
exponentially as 2n while the ground state always maintains the same degeneracy. It stands to reason that although 
DE offers better results than the previous methods, even when the ansatz contains more than a single layer, the 
SR also decays, following, in general terms, the same trend as the previous methods but for a higher number of 
qubits. Based on this knowledge, increasing the population size P is one way to enhance the SR using DE. To this 
aim, we execute another set of simulations with p = 15 , for which we find that the SR always holds above 88% . 
This configuration improves the previous results and opens the path to further enhance the SR by only increasing 
P. However, this will severely enlarge the number of function evaluations needed for the optimization, which is 
something to look out for when executing in a quantum computer. Notice that DE evaluates P = p · Nθ circuits 
in each iteration in contrast to SLSQP and L-BFGS-B, which only require Nθ , and COBYLA, SPSA optimizers, 
which make one and two function evaluations per iteration, respectively. Then, it is convenient to explore other 
alternatives rather than directly increasing P, for instance, modifying the recombination scheme.

Exponential crossover
Despite the significant improvement, using a binomial crossover together with the mutation scheme given by 
(4) for p ∈ {1, 15} does not guarantee the avoidance of all local minima in the range studied. This suggests that 
the configuration used can still cause all individuals to cluster in a local minimum if �xbest and other targets get 
trapped.

To try to avoid this, we change the recombination criteria to exponential, which results in a more aggressive 
mutation scheme. An exponential crossover drastically modifies the target, maximizing the parameter space 
exploration and the probability of tunneling in a minimum. However, we lose convergence when approaching 
the global minimum, given that �xbest has less influence, and most of the modified targets will not improve the 
energy. In this way, we fix the maximum number of iterations allowed to 2.5 · 104 , which is far from the num-
ber of iterations Nit done in the previous simulations that encompass from a few hundred to around 8 · 103 for 
p = 1 and 14 qubits. We can see in Fig. 2 how this DE configuration reaches the GS with a 100% probability in 
the range studied.

However, this stands when the upper limit of δ that defines SR is 10−2 . More precise approaches to the GS 
( δ << 10−2 ) will require a larger number of iterations to maintain the SR (Fig. 3). Nevertheless, this is not asso-
ciated with local minima, as in the previous cases, but with convergence. Therefore, although the relative error 
achieved is enough in many cases and lower than feasible VQE errors in current quantum hardware, our next 
goal is to minimize Nit and, if possible, reach a δ similar to what gradient methods offer when successfully finding 
the GS (Fig. 4a)27. In Fig. 4, we can see the complete set of final relative errors using the L-BFGS-B ( Nopt = 103 ) 
method and DE ( p = 1 , exp, Nopt = 102 ). We can see how the L-BFGS-B method increasingly finds more excited 
states of H as we grow in the number of qubits. On the contrary, DE always avoids these states but features a 
relative error higher than the L-BFGS-B. The causes are that we limited the maximum number of iterations to 
Nmax
it = 2.5 · 104 and that the exponential crossover leads to slow convergence.

Hybrid optimization
The straightforward strategy to reduce δ is using a gradient-based optimizer after DE with exponential crossover. 
In this case, we call the L-BFGS-B method, given that it is the gradient-based optimizer with the lowest toler-
ance value ( 10−15 ) by default. Our simulations ( Nopt = 100 ) take the individual with the lower energy �xbest after 

(5)

√

∑P
k (Ek − Ē)2

P
≤ t + t ′|Ē|
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2.5 · 104 iterations and initialize a new optimization with the L-BFGS-B method from its parameters. Results are 
shown in Fig. 4c, where this hybrid optimization avoids all local minima and finds the GS with high accuracy.

On the other hand, reducing Nit , and hence the number of circuit executions can be done efficiently by call-
ing earlier a gradient-based optimizer. However, this could imply knowing a priori some information from your 
energy spectra, such as the energy difference between the GS and the first excited level. Another possibility is to 
alternate the use of DE with exp and bin recombination schemes.

Towards strongly correlated systems
In this final section, we apply the same methodology to a more complex model from the physical point of view, 
the Hubbard model. Although the 1D Ising model can work as a complex optimization problem, as we saw in 
the previous section employing a quantum circuit that is agnostic to the system, its spin configurations can be 
analytically obtained. In fact, going to the base of fermionic operators by means of an inverse Jordan–Wigner 
transformation, the Ising model studied just involves quadratic terms of fermionic creation/annihilation opera-
tors, which are classically tractable. This is not the case for the exact calculation of strongly correlated systems, 
which include in their Hamiltonians higher-order terms, and for what quantum computing holds as a promis-
ing tool in diverse fields. To delve into correlations we use the most common alternative, which is the Hubbard 
model in a 1D lattice12

Figure 3.   Relative error δ = 1− |Eθ /E0| vs. iteration for a 10 qubits Ising chain without magnetic field using 
DE with exponential crossover ( p = 1 ). The plot shows five different random initialization of the population P. 
Optimizations leap all excited states in the first 1000 iterations approximately. However, they need much more 
iterations to improve the convergence to the GS.

Figure 4.   Relative errors comparison using local, global, and hybrid optimization strategies. (a) L-BFGS-B data 
of Nopt = 1000 experiments. The inset shows the excited states (grey curves) found during optimizations. (b) 
Results using DE with p=1 and exponential crossover for Nopt = 100 . Relative error grows with the number of 
qubits given that optimizations are limited by a constant number of iterations ( Nmax

it = 2.5 · 104 ). (c) Results of 
a hybrid strategy, where we repeat the previous DE simulations to avoid convergence to excited states, but we 
subsequently call the L-BFGS-B optimizer to polish �xbest.
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where the index s ∈ {↑,↓} denotes the spin of the electrons, t is the hopping amplitude that we assume constant 
for simplicity, and U is the Hubbard constant that represents the strength of the on-site Coulomb repulsion. The 
operator a†i,s ( ai,s ) creates (annihilates) an electron of spin s at site i. We take periodic boundary conditions. In 
this case, to see DE performance minimizing the energy, we do not consider a quantum circuit agnostic to the 
system to ensure expressibility. By contrast, we use a Hamiltonian Variational Ansatz (HVA) that is adequate to 
model a wide range of condensed matter systems39,40,54. The HVA is a QAOA-inspired ansatz based on adiabatic 
evolution to achieve the ground state of the system40. It takes the Hamiltonian to construct the quantum circuit, 
so we need to map it into Pauli operators using, for instance, a Jordan-Wigner transformation6. The resulting 
Hamiltonian is expressed then as a sum of commuting groups, i.e., H =

∑

k Hk where [Hk ,Hk′ ] �= 0 , that deter-
mines our quantum circuit. The HVA generates a trial wavefunction of the form

where each layer l is a product of unitary operators Uk(θk,l) = e−iθk,lHk that can be translated to qubit instructions, 
and |ψ0� is the ground state of some part of the Hamiltonian, for instance, Ht . There are different ways to obtain 
|ψ0� with variable fidelity with respect to the target state54,55. However, in contrast to the general prescription, we 
opt to make the preparation of |ψ0� part of our variational protocol up to some extent. We do this to increment 
the complexity of the optimization procedure as the HVA is an expressible and trainable ansatz. Otherwise, we 
would need to increase the number of qubits to see the effects of a complex optimization landscape, as it happens 
for the TFIM with the QAOA ansatz27. As a consequence, we would require a considerable amount of cores and 
memory for a classical simulation. To ensure expressibility, we prepare a parameterized wavefunction inspired in 
the ground state of the non-interacting part of the Hubbard Hamiltonian (6), i.e., the one consisting of quadratic 
terms. We perform a classical calculation of the transformation matrix that allows us to diagonalize the non-
interacting part of (6). Then, we compute the Slater determinant associated with the minimum eigenvalue. In 
the computational basis, this state |ψ0� can be expressed as a product of NOT gates (depending on the number 
of electrons), single qubit rotations RyRz , and CNOT gates55. Thus, we can build the parameterized initial state 
|ψ0� with the same structure as the layers of the hardware efficient ansatz used for the 1D Ising model but remov-
ing the parameterized Rz gates and substituting the CZ gates with CNOTs. We can disregard Rz gates since the 
Hamiltonian Ht is real and, therefore, also its eigenstates. The structure of the full quantum circuit is shown in 
Fig. 5a. For simulations, we focus on a four-site Hubbard model ( t = 1 , U = 1 ), for which we need a total of n = 8 
qubits due to the electron’s spin. Our quantum circuit takes two layers for the variational initial state and n/2 
layers for the HVA, i.e., Nθ = 36 parameters. We perform again several sets of simulations using (1) all previous 
local optimizers, (2) DE with p = 1 and binomial crossover, (3) DE with p = 1 and exponential crossover and 
(4) a hybrid optimization scheme DE (exp)/L-BFGS-B as the one previously employed. We execute Nopt = 1000 
optimizations with random initialization for the local optimizers and Nopt = 100 for the ones using DE. The 
parameters of the optimizers remain unchanged except for SPSA, for which we need to enlarge Nmax

it  to 5 · 104.
As shown in Fig. 5b, local optimizers fail to minimize the energy featuring a relatively low SR. As before, DE 

with binomial crossover provides better results than these algorithms but still gives a substantial amount of incor-
rect outputs. For its part, DE evolution with exponential crossover approaches quite well to the GS energy after 
Nit = 2.5 · 104 iterations. That is an outstanding point, given that any of the optimizations end up meeting the 
convergence criteria. Therefore, the success rate obtained is only a convergence problem associated with limiting 
Nit and our tolerance threshold for δ . In this way, we suppose that DE exp has avoided all traps in the optimiza-
tion landscape. This is demonstrated in the final set of simulations, where the L-BFGS-B optimizer applied to 
the best candidate of DE exp achieves the ground state energy with 100% probability. Finally, another important 
point comes from the fact that, for local optimizers and DE bin, optimizations stop at energy values that are not 
eigenvalues of the Hamiltonian. This could be associated with other traps in the optimization landscape, like 
barren plateaus, rather than local minima. It stands to reason that these areas appear due to the complexity of 
the problem, the variational initial state, and the breakout of adiabaticity caused by the random initialization of 
the parameters27. Of course, this does not harm the ansatz expressibility, just the complexity of the optimization. 
Despite that, DE with exponential crossover avoids all conflicting points for the case studied.

Discussion
In the near term, the most powerful applications of quantum computers rely on VQAs. However, their applica-
bility to large systems is a current challenge due to optimization-landscape problems. In this context, the ansatz 
selection, to enhance trainability maintaining expressibility, and the optimization method, are crucial for their 
performance. In this work, we show DE as a strong candidate to lead the optimization in VQAs. In particular, 
using basic DE configurations, our results evidence the ability of DE to avoid local minima, clearly outperform-
ing four of the most used optimizers in VQAs literature.

We find that DE with binomial crossover performs better than local optimizers and provides strong con-
vergence. However, it fails to avoid all local minima. DE with exponential crossover features a more aggressive 
mutation scheme, increases the parameter space exploration and the probability of eluding excited states, but 
needs a large Nit to maintain the same accuracy as the other methods when finding the ground state. To avoid 
local minima, we can apply other alternatives instead of or together with the exponential crossover. For instance, 
increasing P, using more individuals in the mutation scheme given by (4), or using a random individual for �x0 

(6)H = Ht +HU = −t
∑

s

n
∑

i

(

a†i,sai+1,s + a†i+1,sai,s

)

+ U

n
∑

i

a†i,↑ai,↑a
†
i,↓ai,↓

(7)|�(θ)� =

L
∏

l

(

∏

k

e−iθk,lHk

)

|ψ0�
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instead of �xbest . Nevertheless, we can not expect these variations to need fewer circuit executions to reach the 
ground state. In this context, hybrid optimization schemes such as the one employed or another that intersperse 
DE with a local optimizer seem to be more correct approaches to this purpose, as well as to elude local minima.

Besides their simplicity, the most relevant characteristic of DE resides in its ability to continue evolving 
regardless of one or several individuals getting stuck, so it could be immune/resilient to vanishing gradient areas. 
This comes reasonably from Fig. 5b, although more experiments should address it specifically. In addition, DE 
could present additional benefits against gradient-based algorithms since computing gradients requires more 
shots as they become small22.

This work uses exact simulations to find the GS in a VQE to see the capability of the different optimizers to 
avoid local minima in ideal conditions. In this context, DE and hybrid optimizations with DE demonstrate a 
compelling advantage to scale VQAs. Future work addressing DE performance in noisy environments and real 
quantum computers can reaffirm DE-based optimization as a robust candidate to walk toward the so-called 
quantum advantage in VQAs.

Data availability
All data generated or analysed during this study are available from the corresponding author upon reasonable 
request.
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(a)

(b)

Figure 5.   (a) Schematic illustration of the parameterized quantum circuit used to find the ground state of the 
Hubbard Hamiltonian (6). The figure exemplifies the circuit used to solve a two-site lattice ( n = 4 qubits). The 
part colored in red represents the parameterized initial state belonging to the non-interacting term Ht . The blue 
one corresponds to the layers of the HVA. The unitary operator UU (θ) = e−iθHU is associated with the Hubbard 
term in (6), while Ut and U ′

t come from the two sets of commuting groups defined from the Jordan–Wigner 
transformation of Ht . (b) Plot of relative error comparison using several optimizers in a 8-qubit 1D Hubbard 
model. We include a table to show the SR for each of them. The solid, dashed, and dotted lines illustrate the 
ground state, the first excited, and the upper energy levels, respectively. All optimizations using DE with 
exponential crossover strategy stopped at Nmax

it = 2.5 · 104 iterations. Therefore, its SR is not associated with 
local minima but limited to Nmax

it  . Simulations using the hybrid optimization scheme confirm this fact featuring 
a 100% SR.
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