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Some applications of Time Series

Common issues
• Large sequences
• High non-linearity
• High dimensionality

Some Machine Learning algorithms, like Recurrent Neural Networks (RNNs), analyse time series to predict unknown values of variables in a complex system. When dealing with multi-
layer networks and broad series, some issues, such as overfitting or memory losses, arise. Several approaches intend to address them, for example, the Long Short-Term Memory (LSTM)
cell. Despite these approaches, learning from multivariate-complex systems is still a challenge and requires networks with many non-linear terms, expensive to compute on classical
devices.
Quantum Computation emerges as a promising approach to tackle complex problems more efficiently since it allows to compute non-linear terms in a high dimensional space without
spending exponential resources. We propose a Quantum RNN (QRNN) model as a first step towards multivariate time series forecasting. The core of QRNN is a parameterized quantum
circuit that iteratively exchanges information, but, at the same time, it keeps memory from past data.
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1. Motivation

Our objective is to have a Machine Learning (ML) algorithm that models multivariate time series.

2. Multivariate time series

3. The Classical RNN model

5. Results

Conclusions for this work:
• The presented QRNN model 

can learn a multivariate 
series and predict the 
behaviour of a univariate 
series that depends on it.

• With a small number of 
qubits we achieve a good 
convergence, by adding 
multiple entanglement 
layers.

Next steps:
• Simulation with noise and 

sampling.
• Explore other optimisation 

techniques: stochastic and 
genetic algorithms.

• Training noisy data.

6. Perspectives

4. The QRNN circuit structure

Finance
• Stock prices
• Financial crashes

Meteorology-geology
• Weather forecasting
• Earthquake prediction

Medicine
• Electroencephalography

Artificial Intelligence
• Natural language
• Speech recognition

Industry
• Data from sensors
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The QRNN circuit is inspired in the classical RNN, by dividing the qubits into two groups [2,3]:
• Exchange register (E): recurrently, it receives and measures classical data.
• Memory register (M): it is never measured, keeping previous information.
The unitary 𝑈 encodes data into the circuit, applies an evolution depending on the set of parameters 𝜽
and entangles qubits from E to M, transporting information between the two registers.

This is the unitary U for multivariate inputs, similar to the proposal in ref. [4], a
hardware-efficient ansatz for gate-based devices. Data encoding is repeated R
times to achieve a better expressive power [5,6].

⋮

𝑥𝑛𝑣−1 →

𝑦 →

↓ ↓ ↓ ↓ ↓

time

The supervised RNN cell receives a multivariate 
input at each time and returns:
• an estimation as output, 𝑦(𝑡), 

• a hidden state, ℎ(𝑡).

The latter is reintroduced inside the cell 
recurrently.
We show the cell and its unfolded representation 
through time [1].
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Encoding Evolution + Entanglement
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a) Triangular-dimmed signal

b) Forced Van der Pol signal 

c) Interference of two Van der Pol signals

We use our QRNN model to predict future
values from a known series. At a time t, the

network takes the vector 𝒙 𝑡 = 𝑥 𝑡
0 , … , 𝑥 𝑡

𝑛𝑣−1

and estimates a value 𝑦 𝑡 , which corresponds to

a magnitude that depends on the inputs with
different delays.
• Cost function: root mean square error 

(RMSE) between the network’s outputs 
𝑦(𝑡) and the references 𝑦 𝑡 .

• Parameters: set 𝛉 for rotation gates, scaling 
factor 𝑎, bias 𝑏.   

𝑦(𝑡) = 𝑎 · 𝑍⊗𝑛𝐸 𝒙, 𝛉
(𝑡)

+ 𝑏

• Optimisation: minimisation of the RMSE by 
L-BFGS-B method; random initialisation of 
𝛉.

The circuit is ideally emulated with a density
matrix emulator.

Training Prediction/Test
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Data
𝑥 𝑡 = 𝐴 𝑒−𝜇𝑡 𝑔(𝑇, 𝑡)

𝑔(𝑇, 𝑡) triangular wave, period 𝑇
A = 0.75     𝜇 = 0.02     𝑇 = 5

𝑦 𝑡 = 𝑥(𝑡 + 𝑡𝑑)
td =12

Network hyperparameters
nE = 1     nM = 2     L = 3     R = 2

Data
𝑑2𝑥

𝑑𝑡2
− 𝜇 1 − 𝑥2

𝑑𝑥

𝑑𝑡
+ 𝑥

= 𝐴 sin 𝜔𝑡

A = 1     𝜇 = 2     𝜔 = 5

𝑦 𝑡 = 𝑐 𝑥(𝑡 + 𝑡𝑑)
td = 15     c = 0.25

Network hyperparameters
nE = 2*     nM = 3     L = 4     R = 2

* Data is encoded in 2 qubits

Data
𝑑2𝑥

𝑑𝑡2
− 𝜇 1 − 𝑥2

𝑑𝑥

𝑑𝑡
+ 𝑥 = 0

𝑦 𝑡 = 𝑐0 𝑥
0 𝑡 + 𝑡𝑑

0 + 𝑐1 𝑥
1 𝑡 + 𝑡𝑑

1

𝜇0 = 2    td
0 = 5     c0 = 0.25

𝜇1 = 1    td
1 = 18     c1 = 0.025

Network hyperparameters
nE = 2     nM = 3     L = 4     R = 2
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