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Some applications of Time Series

Common issues
• Large sequences
• High non-linearity
• High dimensionality

Some Machine Learning algorithms, like Recurrent Neural Networks (RNNs), analyse time series to predict unknown values of variables in a complex system.
When dealing with multi-layer networks and broad series, some issues, such as overfitting or memory losses, arise. Several approaches intend to address them,
for example, the Long Short-Term Memory (LSTM) cell. Despite these approaches, learning from multivariate-complex systems is still a challenge and requires
networks with many non-linear terms, expensive to compute on classical devices.
Quantum Computation emerges as a promising approach to tackle complex problems more efficiently since it allows to compute non-linear terms in a high
dimensional space without spending exponential resources. We propose a Quantum RNN (QRNN) model as a first step towards multivariate time series
forecasting. The core of QRNN is a parametrized quantum circuit that iteratively exchanges information, but, at the same time, it keeps memory from past data.
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1. Motivation

Our final objective is to have a Machine Learning (ML) algorithm that models multivariate time series.

2. Multivariate time series

3. The Classical RNN model

5. Results

Conclusions for this work:
• The presented QRNN model can 

predict sequences of one-
variable series.

• With a small number of qubits 
we achieve a good convergence.

Next steps:
• Data re-uploading to increase the 

expressivity of the encoding 
[5,6].

• Algorithm for multivariate series.
• Simulation with noise and 

sampling.
• Explore other optimization 

techniques: stochastic and 
genetic algorithms.

6. Perspectives

4. The QRNN circuit structure

Finance
• Stock prices
• Financial crashes

Meteorology-geology
• Weather forecasting
• Earthquake prediction

Medicine
• Electroencephalography

Artificial Intelligence
• Natural language
• Speech recognition

Industry
• Data from sensors
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The QRNN circuit is inspired in the classical RNN, by dividing the qubits into two groups [2,3]:
• Exchange register (E): in each frame, it receives classical data and is finally measured.
• Memory register (M): is never measured, keeping information from all previous inputs.
The unitary 𝑈 encodes data into the circuit, applies an evolution depending on the set of parameters 
𝜽 and entangles qubits from E to M, transporting information between the two registers.

𝑅𝑥(𝜃𝑙,3) 𝑅𝑧(𝜃𝑙,4) 𝑅𝑥(𝜃𝑙,5)

Our unitary U for univariate inputs is similar to the 
proposal in ref. [4]. It is a hardware-efficient ansatz 
for gate-based quantum devices.

𝑅𝑦(arcco𝑠 𝑥 𝑡 )

× 𝐿

𝑙 from 0 to 𝐿 − 1

⋮

𝑥𝑛𝑣 →

𝑦 →

↓ ↓ ↓ ↓ ↓

time

The supervised RNN cell receives a 
multivariate input at each time and returns:
• an estimation as output, 𝑦(𝑡), 

• a hidden state, h.
The latter is reintroduced inside the cell 
recurrently.
We show the cell and its unfolded 
representation through time [1].
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Encoding Evolution + Entanglement
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Attenuation factor = 0.01  Period = 20a) Triangular-dimmed wave

Amplitude 1 = 0.8  Period 1 = 40  A 2 = 0.32  P 2 = 20  Base = 0.25 b) Truncated-2-freq Fourier

Amplitude 1 = 0.4  -parameter = 1.0c) Van der Pol oscillator

We use our QRNN model to predict future values 
from a known series. At a time t, the network takes 
the value 𝑥 𝑡 and predicts the next one in the 

sequence, i.e., 𝑦(𝑡) = 𝑥 𝑡+1 .

• Cost function: root mean square error (RMSE) 
between the network’s outputs 𝑦(𝑡) and the 

references 𝑦 𝑡 .

• Parameters: the set 𝛉 for rotation gates + a 
scaling factor 𝑐.   𝑦(𝑡) = 𝑐 · 𝑍 (𝑡)

• Optimization: minimization of the RMSE by 
BFGS method; random initialization of 𝛉.

Here, three different cases as a test for the model. 
The circuit is ideally simulated.
• 𝑛𝑀 = 3 qubits
• 𝐿 = 4 layers
• 𝑁𝜃 = 52 parameters

Training Prediction/Test
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